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Analysis Qualifying Exam Notes + Examples

1 Distribution Theory

Definition 1.1. A distribution is a linear functional on a nice function space of test functions. For
example,

(a) The space of distributions D1 is the dual of C8
c .

(b) The space of tempered distributions S 1 is the dual of the Schwartz space S .

(c) The space of compactly supported distributions E 1 is the dual of C8.

Note that one has the inclusions

C8
c Ă S Ă C8 Ă E 1 Ă S 1 Ă D1,

where one identifies f with p f , ¨qL2 . We endow distribution spaces with the weak-* topology, i.e. Ln Ñ L in
S 1 if Lnp f q Ñ Lp f q for all f P S , and write Lp f q “ x f , Ly.

The reason for dealing with distributions is to extend the classical theory of analysis to more
general objects than functions. Motivated by integration by parts, we define the derivative of a
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distribution as
x f , Bxi Ly “ ´xBxi f , Ly.

For example, if H is the Heaviside step-function,

x f , H1y “ ´x f 1, Hy “ ´

ˆ 8

0
f 1dx “ f p0q,

so H1 “ δ is the delta function, defined by x f , δy “ f p0q. Similarly, the Fourier transform of a
distribution is given by

x f , pLy “ x pf , Ly,

and as an example,

x f , yδpkqy “ x pf , δpkqy “ p´1qk
pf pkqp0q “ {p´ixqk f p0q “

ˆ 8

´8

p´ixqk f pxqdx “ x f , pixqky.

where the latter is the Kronecker delta. in the sense of functions. A distribution’s support S is
the smallest closed set on such that the distribution vanishes on any function supported outside
S, giving a precise definition to E 1. One may define the convolution of a distribution and a test
function by

xϕ, u ˚ Ty “ xru ˚ ϕ, Ty,

where rupxq “ up´xq. More generally, if S, T are distributions and T has compact support, then
S ˚ T is defined as the unique distribution satisfying pS ˚ Tq ˚ u “ S ˚ pT ˚ uq for all test functions u
such that convolution is a commutative and associative operation satsifying the usual formulas.

1.1 Exercises

2 Real Analysis

2.1 Convergence of Functions

A very common type of problem in analysis is to show that a sequence of functions converges (or
does not converge). Here is an outline of the main proof techniques and types of convergence:

2.1.1 A.e. convergence

(a.e.) pointwise convergence: A sequence of (Lebesgue) measurable functions fn is said to con-
verge pointwise a.e. if

µptx : fnpxq Ñ f pxquq “ 0.

Here are some ways to prove pointwise convergence:

Proposition 2.1. If fn Ñ f in Lp or in measure, there is a subsequence fnk such that fnk Ñ f pointwise
a.e.

Proof. Convergence in Lp implies convergence in measure, as
ˆ

| f ´ fn|p “

ˆ
| f ´ fn|ăϵ

| f ´ fn|p `

ˆ
| f ´ fn|ěϵ

| f ´ fn|p ě ϵpµt| f ´ fn| ą ϵu,

3



and taking n Ñ 8 yields the claim. Thus, it suffices to prove it if fn Ñ f in measure. Indeed, if for
any ϵ ą 0, µt| fn ´ f | ą ϵu Ñ 0, one may find a subsequence nk of sets

Ak “

"

x : | fnk pxq ´ f pxq| ą
1
2k

*

, µpAkq ă
1
2k .

By Borel-Cantelli, we get that

µplim sup Akq “ µtx : | fnk pxq ´ f pxq| ą
1
2k for infinitely many ku “ 0.

But the negation of that statement is precisely | fnk pxq ´ f pxq| ď 1
2k for large enough k, i.e. fnk pxq Ñ

f pxq. Thus,
µptx : fnpxq Ñ f pxqu “ 0,

so fnk Ñ f a.e.

Remark 2.1. A very useful criterion for convergence is as follows: an Ñ a in a metric space iff every
subsequence of an has a further subsequence converging to a. In particular, since this is not true for a.e.
convergence of the typewriter sequence, one concludes that a.e. convergence is not metrizable.

2.1.2 Lp convergence

Definition 2.1. We say that fn Ñ f in Lp for 1 ď p ă 8 if

} fn ´ f }
p
p “

ˆ
| fn ´ f |pdx Ñ 0,

and fn Ñ f in L8 if fn Ñ f uniformly except on a null set.

There are three main tools and a variety of corollaries that may be used to establish convergence
in Lp.

Theorem 2.1. (Monotone Convergence Theorem) If fn ě 0 is an increasing sequence of functions and
fn Ñ f pointwise a.e., then fn Ñ f in Lp.

Proof. Let fn Ñ f be an increasing sequence of functions. Then, clearly, lim
´

fn ď
´

f . For the
converse, pick a simple function g such that

´
f ´ g ă ϵ, and consider the set of points En “ tx :

fnpxq ě αgpxqu. Then, ˆ
fn ě α

ˆ
En

g,

and as α Ñ 1 and n Ñ 8, taking the supremum over all simple g yields the claim.

The Lp case then easily follows.

Theorem 2.2. (Fatou’s Lemma) If fn ě 0, then
´

lim inf fn ď lim inf
´

fn.

Corollary 2.2.1. (Reverse Fatou) By applying Fatou to g ´ fn, one gets that if fn P L1 and fn ď g, g P L1,
then

lim sup
ˆ

fn ď

ˆ
lim sup fn.
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Theorem 2.3. (Dominated Convergence Theorem) If fn Ñ f a.e. and | fn| ď g for g P Lp, then fn Ñ f in
Lp.

There are two particularly strong results that are necessary to prove more interesting claims re-
garding convergence in Lp.

Theorem 2.4. (Egorov’s Theorem) Let µpXq ă 8, and suppose fn Ñ f a.e. on X. Then, for every ϵ ą 0,
there exists a set A such that µpAq ă ϵ and fn Ñ f uniformly on Ac.

Proof. Consider the set

An,k :“ tx : | fnpxq ´ f pxq| ą
1
k

u.

Recall from the proof of convergence in measure implies a.e. convergence that µplim supnÑ8
An,kq “

0 for all k. Pick a subsequence nk s.t.
Bk :“

č

něnk

An,k

and µpBkq ă ϵ
2k for all k. Then, if C “

Ť

k Bk, µpCq ă ϵ, on Cc one has

@kDnk@n ě nk, | fnpxq ´ f pxq| ď
1
k

,

which implies uniform convergence.

Theorem 2.5. (Lusin’s Theorem) If µpXq ă 8 and f is measurable on X, for any ϵ ą 0 there exists a
compact set K such that µpKcq ă ϵ and f is continuous on K.

Proof. Take a sequence fn P CcpXq such that fn Ñ f in a.e. (which is possible by density of Cc in
L1). By Egorov and regularity of the Lebesgue measure, fn Ñ f uniformly on some compact set
K such that µpKcq ă ϵ, so f is the uniform limit of continuous functions on a compact set, i.e. it is
continuous.

We now list the proofs of the fundamental inequalities used in analysis.

Lemma 2.6 (Young’s Inequality). For a, b ě 0, 1
p ` 1

q “ 1,

ab ď
ap

p
`

bq

q
,

with equality iff ap “ bq.

Proof. Consider xp´1 and its inverse xq´1 on r0, as ˆ r0, bs. Then, the sum of the integrals of the two
functions is at least the are of the rectangle, with equality iff the functions touch the corner, i.e.
ap´1 “ b, so ap “ bq, and the claim follows.

Definition 2.2. If p, q satisfy the condition above, they are known as Holder conjugates.
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Theorem 2.7 (Holder’s inequality). For f P Lp, q P Lq, where 1 ď p, q ď 8 are Holder conjugates, then
ˆ

| f g| ď } f }p}g}q,

with equality for 1 ă p ă 8 iff | f |p “ c|g|q for some c ě 0.

Proof. Normalize f , g so that } f }p “ }g}q “ 1, and apply Young’s inequality. The cases p “ 1, q “ 1
may be checked directly. The equality follows from the equality case in Young’s inequality.

Corollary 2.7.1 (Generalized Holder). If
řn

k“1
1
pk

“ 1
r , then

›

›

›

›

›

n
ź

k“1

fk

›

›

›

›

›

r

ď

n
ź

k“1

} fk}pk .

Theorem 2.8 (Minkowski’s Inequality). For 1 ď p ď 8,

} f ` g}p ď } f }p ` }g}p,

with equality for 1 ă p ă 8 iff f “ cg for some constant c.

Proof. Normalizing so that } f ` g}p “ 1, by Holder,
ˆ

| f ` g|p ď

ˆ
| f ` g|p´1| f | ` | f ` g|p´1|g| ď } f ` g}

p´1
p p} f }p ` }g}pq “ } f }p ` }g}p,

and so equality holds iff | f ` g|
p´1

q “ c| f |p “ c1|g|p, and since pp ´ 1qq “ p and g and f must have
the same sign at each point, equality holds iff g “ c f .

Theorem 2.9 (Dual of Lp). For 1 ď p ă 8, the dual of Lp is Lq, where 1
p ` 1

q “ 1.

Proof. For ϕ P pLpq˚, define the (signed) measure ν : A Ñ ϕpχAq. Then, the desired function is the
Radon-Nikodym derivative gϕ “ dν

dµ , and setting fn “ |g|
q
p χ|g|ďn and using monotone convergence

lemma yields g P Lq.

Definition 2.3. For a σ-finite measure/topological space pX, µq, define the Banach spaces

rcapµq Ă capµq Ă bapµq

of bounded regular Borel, countably additive, and finitely additive signed measures absolutely con-
tinuous with respect to µ with the total variation norm.

Remark 2.2. The above proof shows that pL8pX, µqq˚ – bapµq, and pL1q˚˚ – ca Ă pL8q˚.

Lemma 2.10. L1 is weakly sequentially complete, i.e. every weakly Cauchy sequence converges.
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Proof. Clearly, fn is uniformly bounded in L1 by Banach-Steinhaus. Define the signed measure

νpAq “ lim
nÑ8

ˆ
A

fndµ,

and consider the Radon-Nikodym derivative f “ dν
dµ . Then, one easily verifies that

´
f χAdµ “

νpAq “ limn
´

fnχAdµ, and so fn á f .

Remark 2.3. Since the unit ball in a reflexive Banach space is weakly sequentially compact, all reflexive
Banach spaces are weakly sequentially complete.

Corollary 2.10.1. If limnÑ8

´
A fn exists and is finite for all measurable A, then fn á f for some f P L1.

The following are important consequences of Egorov’s Theorem as they relate to convergence in
Lp :

Lemma 2.11. If µpXq ă 8, } fn}p ď M ă 8, 1 ă p ă 8, and fn Ñ f a.e., then fn Ñ f in L1.

Proof. First note that f P Lp, as by Fatou,

} f }p “ }| f |p}1 “

ˆ
lim inf

n
| fn|p ď lim inf

n
} fn}p ă 8.

Fix ϵ ą 0. By Egorov, fn Ñ f uniformly on some set A, so by Holder,
ˆ

X
| f ´ fn| “

ˆ
A

| f ´ fn| `

ˆ
Ac

| f ´ fn| ď ϵµpXq ` }χAc }q} f ´ fn}p “ ϵµpXq ` µpAcq
1
q M ă ϵpµpXq ` Mq

for p, q Holder conjugates and large enough n by choosing A such that µpAcq
1
q ă ϵ.

Remark 2.4. The same argument shows that if µpXq ă 8, fn Ñ f a.e. and } fn}q ď M for q ą p, then
fn Ñ f in Lp.

Lemma 2.12. For 1 ď p ă 8, if fn P Lp, fn Ñ f a.e., and } fn}p Ñ } f }p, then fn Ñ f in Lp.

Proof. Note that since |x|p is convex, | f ´ fn|p ď 2p´1p| f |p ` | fn|pq. Applying Fatou’s lemma to
2p´1p| f |p ` | fn|pq ´ | f ´ fn|p yields

2p} f }p ď lim inf
n

2p´1p} f }
p
p ` } fn}

p
pq ´ lim sup } f ´ fn}

p
p,

which then yields the desired inequality.

Corollary 2.12.1. If fn Ñ f a.e. and fn P L2, f P L2 and } f }2 ď lim inf } fn}2.

Proof. Fatou’s lemma applied to f 2
n .

7



2.1.3 Uniform Integrability and Compactness in Lp

Definition 2.4. A subset X Ă Lp is called uniformly integrable if it is uniformly bounded in Lp and for
any ϵ ą 0 there exists a δ ą 0 such that for any f P X, } f }LppEq ă ϵ whenever µpEq ă δ.

Remark 2.5. If A is a finite measure space, then X is uniformly integrable in L1 iff for all ϵ ą 0, there is a
λ such that supX

´
| f |ąλ f pxqdµ ă ϵ.

Proof. Suppose X is uniformly integrable. Then, by Chebyshev, µp| f | ą λq ď M
λ for M “ supX } f }1,

so by uniform integrability, one can make
´

| f |ąλ f pxqdµ ă ϵ for large enough λ. Conversely, we
get that supX } f }1 ď ϵ ` λµpAq, and for any ϵ ą 0,

´
E | f | ď ϵ ` λµpEq ă 2ϵ for δ “ ϵ

λ .

A lot of results regarding convergence work only on finite measure spaces, yet lots of time one
works with infinite measure spaces. A very useful concept known as tightness allows us to reduce
the problem to a finite measure space.

Definition 2.5. A family X Ă LppXq is tight if for all ϵ ą 0, there exists E Ă X, µpEq ă 8, s.t.
} f }LppEcq ă ϵ for all f P X.

Theorem 2.13 (Vitali Convergence Theorem). If t fnu is a tight sequence of uniformly integrable func-
tions in Lp, 1 ď p ă 8, then fn Ñ f in Lp iff fn Ñ f in measure.

Proof. Suppose fn Ñ f in measure. Pick ϵ ą 0 and choose a corresponding E. Then, by uniform
integrability, pick δ ą 0 such that } f }LppEq ă ϵ when µpEq ă δ. Moreover, by Egorov, pick Aϵ Ă E
such that µpAc

ϵq ă δ. Passing to an a.e. convergent subsequence, we use Fatou’s lemma to conclude
that } f }LppEcq, } f }LppAc

ϵq ă ϵ “ pµpEq ` 3qϵ.
ˆ

| fn ´ f |pdx “

ˆ
EXAϵ

| fn ´ f |pdx `

ˆ
EXAc

ϵ

| fn ´ f |pdx ` 2ϵ

ď µpEqϵ ` 2ϵ ` 2ϵ.

Remark 2.6. Since Egorov shows that convergence a.e. on a finite measure set implies convergence in
measure, one obtains the following strong corollary: if fn is uniformly integrable in Lp, tight, and fn Ñ f
a.e., then fn Ñ f in Lp.

Lemma 2.14. If fn P L1 and
´

A fn converges and is finite for all measurable A, then fn is uniformly
integrable in L1. In particular, if fn Ñ f in Lp, then t fnu is uniformly integrable.

A very important theorem is that of precompactness in Lp spaces.

Theorem 2.15 (Kolmogorov-Riesz). X Ă LppΩq, Ω Ă Rn, 1 ď p ă 8 is precompact iff:

(a) Boundedness: sup f PX } f }p ă 8.

(b) Tightness: For any ϵ ą 0, there exists an R ą 0 such that
´

r´R,Rsc | f |p ă ϵ for all f P X.

(c) (Uniform) Continuity: For all ϵ ą 0, there exists a δ ą 0 such that
´

| f px ` yq ´ f pxq|pdx ă ϵ
whenever |y| ă δ for all f P X.

Remark 2.7. Tightness and uniform continuity imply boundedness, so it is not strictly necessary.
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Remark 2.8. If Ω is bounded, uniform continuity is the only required condition of the theorem.

Proof. ( ùñ ): Suppose X satisfies the conditions of the theorem, and fix ϵ, R, y as in the statement.
Let Q be an open cube centered at the origin, let Qi be nonoverlapping translates such that their
closure covers Bpx, Rq, and define P f on Qi to be the average of f on Qi and 0 otherwise. Then, by
Minkowski and noting that x, y P Qi implies x ´ y P 2Q,

} f ´ P f }
p
p ă ϵp `

ÿ

i

ˆ
Qi

ˇ

ˇ

ˇ

ˇ

1
µpQiq

ˆ
Qi

p f pxq ´ f pzqqdz
ˇ

ˇ

ˇ

ˇ

p

dx

ď ϵp `
ÿ

i

ˆ
Qi

1
µpQq

ˆ
2Q

| f pxq ´ f px ` yq|pdydx

ď ϵp `
1

µpQq

ˆ
2Q

ˆ
Rn

| f pxq ´ f px ` yq|pdxdy ď p2n ` 1qϵp.

( ðù ): If X Ă LppΩq is precompact, it is clearly bounded. Moreover, for ϵ ą 0, if Bp f1, ϵq, .., Bp fn, ϵq,
cover X, pick R s.t. } fi}LppBpx,Rqq ă ϵ. Then,

} f }LppBpx,Rqcq ď } f ´ fi}LppBpx,Rqcq ` } fi}LppBpx,Rqcq ă 2ϵ.

Uniform continuity is established almost exactly the same way.

2.1.4 Weak and Weak-* Convergence

Definition 2.6. For 1 ď p ă 8, let q be the Holder conjugate of p. We say that fn á f (or fn converges
weakly to f ) in Lp if x fn, gy Ñ x f , gy for all g P Lq, where the inner product is just x f , gy “

´
f g. For

1 ă p ď 8, we say fn
˚

á f (or fn converges weak-* to f ) in Lp if x fn, gy Ñ x f , gy for all g P Lq. Note
that weak and weak-* convergence are the same for 1 ă p ă 8.

There are two examples to keep in mind when proving weak convergence:

Example 2.1 (The traveling wave). If f P Lp, 1 ă p ă 8 then if fnpxq “ f px ` nq, f á 0 in Lp.

Proof. For simplicity, we consider the case when f P LppRq. For any g P Lq, Pick compact sets
A, B such that } f }LppAcq, }g}LqpBcq ă ϵ. Then, for n ą supxPA,yPB |x ´ y|, B X pA ´ nq “ ∅, where
A ´ n “ ta ´ n : a P Au. Thus, by Holder,

|x fn, gy| “

ˇ

ˇ

ˇ

ˇ

ˆ
fng

ˇ

ˇ

ˇ

ˇ

ď

ˆ
| f px ` nqgpxq|

ď

ˆ
B

| f px ` nqgpxq| `

ˆ
A´n

| f px ` nqgpxq| `

ˆ
pBYpA´nqqc

| f px ` nqgpxq|

ď ϵ}g}q ` ϵ} f }p ` ϵ2,

where } f }LppBq ď ϵ since pB ` nq X A “ ∅. Sending ϵ Ñ 0 completes the proof.

9



Remark 2.9. Clearly, if one chooses g “ 1, this need not hold for p “ 1.

Example 2.2 (The Oscillator). Let f P L8 be a k-periodic function. Then, if fnpxq “ f pnxq, fn
˚

á
1
k

´ k
0 f pxqdx in L1.

Corollary 2.15.1. Suppose fn á f in Lp. Then, } fn}p is uniformly bounded, and } f }p ď lim inf } fn}p.

Proof. Weakly convergent sequence are bounded + weak lower-semicontinuity of the norm.

Clearly, the examples show that weak convergence need not imply convergence a.e., convergence
in measure, or Lp convergence. Conversely, it is easy to see using Holder’s that convergence in Lp

implies weak convergence. The vertical blow-up examples shows that convergence in measure or
a.e. convergence do not necessarily imply weak convergence. The following important theorem
provides a criterion for weak convergence:

Theorem 2.16 (Dunford-Pettis Theorem). Let X Ă L1. Then, X is uniformly integrable iff it weakly
precompact.

Proof. If X is uniformly integrable, the weak-˚ closure X˚
Ă pL8q˚ is weak-˚ compact by Banach-

Alaoglu. A finitely additive map F is countably additive iff limn FpAnq “ 0 for
Ş

n An “ ∅,
where An is a decreasing sequence of sets. Then, uniform integrability implies that any F P X˚

is countably additive, and thus is given by integration against some f P L1, and there exists a
sequence i´1p fnq á i´1p f q in L1. In particular, i´1 : X˚

Ñ L1 is weak´˚-weak continuous. Thus,
i´1pX˚

q is weakly compact, so X is weakly precompact.

Conversely, suppose X is weakly precompact and not uniformly integrable, and pick a nonuni-
formly integrable subsequence fn such that

´
| fn|ąn | fn|dµ ě C for some C ą 0. Then, by Eberlein-

Smullian, any sequence has a weakly convergent subsequence. But this implies that the subse-
quence is uniformly integrable (see Lemma 2.9), a contradiction.

2.2 Exercises

Spring 2010 Problem 1 Show that a sequence that converges in Lp has an a.e. convergent
subsequence. Moreover, find a sequence of functions that converges to 0 in L2 that does not
converge a.e.

Proof. The first part is Proposition 1.1. For the second part, one may take the typewriter sequence
f1 “ χr0,1s, f2 “ χ

r0, 1
2 s

, χ3 “ χ
r 1

2 ,1s
, ... which converges to 0 in L2 but not a.e.

Spring 2012 Problem 1 Let 1 ă p ă 8, fn : R3 Ñ R such that lim sup } fn}p ă 8. Show that if
fn Ñ f a.e, then fn Ñ f weakly.

Proof. For any g P Lq, pick a compact set A such that }g}LqpAcq ă ϵ and }g}LqpEq ă ϵ whenever
µpEq ă δ for a small enough δ ą 0. Then, by Egorov’s theorem,

ˇ

ˇ

ˇ

ˇ

ˆ
p fn ´ f qg

ˇ

ˇ

ˇ

ˇ

ď

ˆ
AzE

|p fn ´ f qg| `

ˆ
E

|p fn ´ f qg| `

ˆ
Ac

|p fn ´ f qg| “ Opϵq,

10



where the first term is bounded by uniform convergence on a compact set, second term is bounded
since µpEq ă δ, and the third term is bounded by choosing A to be large enough.

Spring 2014 Problem 3 Suppose fn Ñ 0 a.e., } fn}2 ă 8. Show fn á 0 in L2.

Proof. This is a specific case of the previous problem.

September 2018 Problem 1 Suppose fn Ñ f a.e., supn } fn}2 ă 8, and supn }x fn}1 ă 8. Show
that fn, f P L1, fn Ñ f in L1, and that neither of the last two conditions may be omitted.

Proof. The second condition implies that on r´M, Msc, } fn}1 ď N
M for some fixed N ą 0. In partic-

ular, on r´M, Ms, lemma 1.6 guarantees that fn Ñ f P L1. Thus, for any ϵ ą 0, pick M and n large
enough so that

´
r´M,Msc | f | ă ϵ, so then
ˆ

| fn ´ f | “

ˆ
r´M,Ms

| fn ´ f | `

ˆ
r´M,Msc

| fn ´ f | ď
ϵ

2
` p

N
M

` ϵq ă 2ϵ

for sufficiently large M.

Neither of the last two conditions may be omitted, as demonstrated by the counterexamples fn “

χrn,n`1s and gn “ n2χ
r0, 1

n s
.

Fall 2020 Problem 2 Show that there exists a constant c such that

x f , cospsinpnπxqqy Ñ x f , cy

for all f P L1.

Proof. Note that cospsinpnπxqq is 2-periodic. Thus, c “ 1
2

´ 2
0 cospsinpnπxqqdx by the oscillator

example.

Fall 2010 Problem 3 Let fnpxq “ esinp2πnxq. Show fn converges weakly in L1pr0, 1sq and weak-*
in L8pr0, 1sq.

Proof. Let f pxq “ esinp2πxq, and note that f is 1-periodic. Then, by the weak convergence lemma,
fn

˚
á
´ 1

0 esinp2πxqdx in L8. Moreover, fn is uniformly bounded in L8pr0, 1sq. By density arguments,
to show fn á

´ 1
0 esinp2πxqdx in L1, it suffices again to consider characteristic functions of closed

intervals. But this is indeed already shown by the weak convergence in L8 argument, so the proof
is complete.

Spring 2020 Problem 2 Let fn be a sequence of differentiable functions satisfying sup } fn}1 ă

8, sup } f 1
n}1 ă 8, and for any ϵ ą 0, there exists an Rpϵq ą 0 such that sup } fn}L1pr´R,Rscq ă ϵ.

Show fn is has a convergent subsequence in L1.

11



Proof. We use Riesz-Fischer. Clearly, the first two conditions establish uniform boundedness and
tightness. The third condition and Minkowski shows that for |y| ă δ,

ˆ
| f px ` yq ´ f pxq| “

ˆ ˆ x`y

x
| f 1ptq|dtdx ď

ˆ x`y

x
} f 1}1 ď |y|M

by the uniform bound on the derivatives. Thus, the conditions for Riesz-Fischer are satisfied,
showing that t fnu has a convergent subsequence in L1.

Spring 2017 Problem 2 Let fn : r0, 1s Ñ r0, 8q be a sequence of nondecreasing functions uni-
formly bounded in L2. Show that there exists a subsequence that converges in L1.

Proof. We apply Riesz-Fischer. Indeed, since fn is uniformly bounded in L2, it is uniformly bounded
in L1. Since the sequence is on a finite measure space, tightness is unnecessary. Finally, to show
continuity, we use the fact that fn is nondecreasing. Namely, this implies that each fn has at most
a countable number of discontinuities, so each fn agrees with a continuous function a.e.

Then, for any ϵ ą 0, ˆ 1´y

0
| f px ` yq ´ f pxq|dx

Show that l1pNq has the Schur property, i.e. every weakly convergent sequence is norm-
convergent.

Proof. Suppose xn á x but xn Ñ x in l1. Then, there exists a subsequence satisfying }xnk ´ x} ě ϵ.
By a diagonalization argument, pick a further subsequence where the ith element in each sub-
sequence has the same sign for all i. Now, let Sk be a finite subset of the support of xnk ´ x s.t.
}xnk ´ x}l1pSkq ě ϵ

2 . Note that
Ť

k Sk cannot be bounded, as otherwise xn Ñ x on a finite set. In par-
ticular, norm convergence on finite sets implies that after passing to another subsequence, there ex-
ist a sequence of pairwise disjoint Ai Ď Si s.t. }xnk ´ x}l1pAkq ě ϵ

4 . Then, letting y “ signpxn1q1Ť

k Ak
,

we see that
pxnk ´ xq ¨ y ě

ϵ

4
,

for all k, which is a contradiction. Thus, xn Ñ x in l1.

Conclusions
(a) If fn converges a.e. and is bounded by an integrable function, apply the Dominated Con-

vergence Theorem to get convergence in Lp.
(b) If fn Ñ f converges a.e. and } fn}p Ñ } f }p, then fn Ñ f in Lp.
(c) If µpXq ă 8, sup } fn}p ă 8 and fn Ñ f a.e., then fn Ñ f in Lq for q ă p.
(d) If µpXq ă 8 and fn Ñ f a.e., fn Ñ f . Additionally, if fn is uniformly integrable, fn Ñ f in

Lp.
(e) If sup } fn}p ă 8 and fn Ñ f a.e., fn á f .
(f) X is precompact in Lp iff it is tight, continuous, and uniformly bounded.
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3 Fourier Transform

3.1 Interpolation

We start with a review of some key results regarding interpolation in Lp spaces. The overarching
idea is that if a function belongs to two different Lp spaces, it actually belongs to all those in
between the two.

Proposition 3.1. For all 1 ď p ď q ď r ď 8,

Lp X Lr ãÑ Lq ãÑ Lp ` Lr

are continuous inclusions, where Lp X Lr is a Banach space with norm } f }p ` } f }r and Lp ` Lr is a Banach
space with norm infg`h“ f PLq }g}p ` }h}r.

Proof. That all of these are Banach spaces is left as an exercise. Note that for some λ P r0, 1s,

q “ λp ` p1 ´ λqr,

so by Young’s inequality,
ˆ

| f |qdx “

ˆ
| f |λp`p1´λqrdx ď } f λp} 1

λ
} f p1´λqr} 1

1´λ
ď } f }λ

p} f }1´λ
r ď λ} f }p ` p1 ´ λq} f }r.

Similarly, if f P Lq, f

inf
g`h“ f PLq

}g}p ` }h}r ď }χ| f |ą1 f }p ` }χ| f |ď1 f }r ď } f }q.

The conclusion is that one may interpolate between intermediate Lp spaces. We now considerably
generalize this approach by introducing interpolation between bounded operators.

Definition 3.1. f is in weak Lp if

µtx : | f pxq| ą λu ď
Cp

λp ,

where the smallest such C is the weak Lp norm } f }p,w. We say a bounded operator T : Lp Ñ Lq is of strong
type (p,q), and a bounded operator T : Lp Ñ Lq,w is of weak type (p,q).

Remark 3.1. Clearly, if Lp ãÑ Lp,w is continuous with norm 1.

Theorem 3.1 (Riesz-Thorin Interpolation Theorem). Let T : Lp0 Ñ Lq0 , Lp1 Ñ Lq1 be a linear bounded
operator. Then, it is also bounded as an operator T : Lpt Ñ Lqt , where 0 ă t ă 1 and

}T}qt ď }T}1´t
p0

}T}t
p1

,
1
pt

“
1 ´ t

p0
`

t
p1

,
1
qt

“
1 ´ t

q0
`

t
q1

.

Remark 3.2. We call the Riesz diagram of an operator T to be the set of points in the unit square such
that T is of type p 1

p , 1
q q, and the theorem tells us that such a set is convex.

Proof. The proof of the theorem is quite long, but ultimately relies on the following well-known
lemma from complex analysis:

13



Lemma 3.2 (Hadamard Three-Lines Lemma). Let S “ tz : 0 ď Re z ď 1u and suppose F : S Ñ C is
bounded, analytic on the inside, and continuous on the boundary. Then, if Mθ “ supRe z“θ |Fpzq|, one has
Mθ ď M1´θ

0 Mθ
1.

Proof. Without loss of generality, suppose M0 “ M1 “ 1 (otherwise, divide by appropriate pow-

ers). Then, note that Fnpzq “ Fpzqe
z2´1

n converges normally to F and is bounded by 1 on the
boundary, so by maximum modulus, F is bounded by 1. Note that Fn are needed to converge to 0
since one can only apply maximum modulus on a bounded set.

Corollary 3.2.1. By setting gpzq “ Fpezq, one obtains the Hadamard three-circles lemma, which states
that on an annulus, if Mpsq “ sup

|z|“es |gpzq|, then log Mpsq is convex, i.e. log Mprq is convex as a
function of log r.

Then, by a density argument, the proof reduces to proving the inequality for step functions taking
finitely many values, which can then be shown using the lemma.

Finally, we need one last extension of the Riesz-Thorin interpolation theorem.

Theorem 3.3 (Marcinkiewicz Interpolation Theorem). If T is of weak type pp0, q0q and pp1, q1q, then
T is of strong type ppθ , qθq for

1
pθ

“
1 ´ θ

p0
`

θ

p1
,

1
qθ

“
1 ´ θ

q0
`

θ

q1
.

3.2 Fourier Transform

Here are some key results about the Fourier transform that are tested quite frequently on the qual:

Definition 3.2. The Fourier transform pf of f pxq is defined as

Ft f upξq “ pf pξq “

ˆ
Rn

f pxqe´2πiξ¨xdx.

The inverse Fourier transform qf of f pξq is defined as F´1t f upξq “ qf pxq “ 1
p2πqn

´
Rn f pξqe2πiξ¨xdx.

(a) pf p0q “
´

f pxq.

(b) pf 1pξq “ ´2πiξ pf pξq.

(c) zf ˚ g “ pf pg.

(d) {f px ` x0q “ e2πix0¨ξ
pf pξq.

(e) F 2t f upxq “ f p´xq, i.e. F 4 “ I, so F has eigenvalues i, ´1, ´i, 1.

(f) Fte´π}x}2
u “ e´π}ξ}2

.

(g) Riemann-Lebesgue Lemma: The Fourier transform is a linear operator F : L1 Ñ C0, where C0 is
the space of (uniformly) continuous functions vanishing at infinity.

(h) Plancherel’s Theorem: F : S Ñ S is an isomorphism and F : L2 Ñ L2 is a unitary isometric
isomorphism. In particular, } f }2 “ } pf }2 and x pf , pgy “ x f , gy.
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Remark 3.3. One can also take the (inverse) Fourier transform on the torus Tk, which is equivalent to
taking the transform of a periodic function. This is known as a Fourier series. In this case,

pf pnq “

ˆ
Tn

f pxqe´2πin¨xdx, f pxq “

8
ÿ

n“´8

pf pnqe2πin¨x

for n P Zk. Then, the same theorems apply, except that now, F : L2 Ñ l2 and F : L1 Ñ c0.

Remark 3.4. While F : L2 Ñ L2 is an isomorphism, it is not surjective as a map F : L1 Ñ C0. For if it
were, it would induce an isomoprhism of the dual space F˚ : Mb Ñ L8, which is not surjective since the
Fourier transform of a measure is necessarily uniformly continuous. However, by a standard application of
Stone-Weierstrass, the range is dense in C0.

Remark 3.5. Note that the Fourier transform interchanges derivatives and multiplication. Consequently,
regularity on one side implies decay on the other side and vice-versa.

Corollary 3.3.1 (Hausdorff-Young Inequality). By Riesz-Thorin, since F : L1 Ñ L8 and F : L2 Ñ L2

is bounded, it is also bounded as an operator F : Lp Ñ Lq, where 1 ď p ď 2, 2 ď q ď 8, and

1
p

“ 1 ´
t
2

,
1
q

“
t
2

ùñ
1
p

`
1
q

“ 1,

i.e. F : Lp Ñ Lp1

, for 1 ă p ă 2 and p, p1 conjugates. In particular, applying to Fourier series yields
F : Lp Ñ lp1

and F´1 : lp Ñ Lp1

for 1 ď p ď 2.

Of particular interest are the Fourier transforms of certain compactly supported functions, which
can be holomorphically extended to the upper half-plane and are summarized in the following
theorems.

Theorem 3.4 (Paley-Wiener I). f P L2pp0, 8qq iff pf is holomorphic in the upper half-plane and the L2

norm of pf is uniformly bounded over horizontal lines.

Theorem 3.5 (Payley-Wiener II). f P L2pRq is compactly supported in r´A, As iff pf is holomorphic in
the upper half-plane and of exponential type A.

Proof. If f P L2pRq has compact support in r´A, As, for all pf pξq is well-defined in the upper half
plane (as one has a decaying exponential). Moreover, by Fubini and Cauchy’s theorems, one may
check that pf is holomorphic. Finally,

f pa ` biq “

ˆ A

´A
f pxqe´2πixpa`biqdx ď CeA|a`bi|,

as the exponential converges to 0 as b Ñ 8. Conversely, if f is the Fourier transform, let fϵpxq “

f pxqe´ϵ|x|. If one can show that qfϵ is supported on r´A, As and fϵ Ñ f in L2, we are done by
Plancherel.

Corollary 3.5.1. As a direct corollary of this, we can conclude that the Fourier transform of a compactly
supported continuous function is an analytic function decaying at infinity, and so is not compactly sup-
ported by the maximum modulus principle.

Here is an important generalization of these results.
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Theorem 3.6 (Schwartz-Paley-Wiener). An entire function u is the Fourier transform of a compactly
supported distribution v supported on Bp0, Aq iff u ! |z|NeA|z|. Moreover, u ! |z|´NeA|z| for all N ě 0 iff
v P C8

c .

We know that the Fourier transform of a Gaussian decays like another Gaussian. The question is,
can we do better? Turns out, we cannot. This is a reflection of the so-called "uncertainty principle"
of Fourier transforms.

Proposition 3.2 (Uncertainty principle). For f P L2pRq differentiable, } f }2 “ 1,

}x f }2}ξ f }2 ě
1

16π2 ,

with equality obtained only if f and pf are Gaussians.

Proof. Integrating by parts,

1 “

ˆ
| f |2dx “ ´

ˆ
2xRe p f q f 1,

so
1 ď 2}x f }2

2} f 1}2
2 “ 4π}x f }2

2}ξ pf }2
2,

and equality holds whenever x f “ f 1, which defines a Gaussian.

Finally, it is worth mentioning the notion of Fourier multipliers/symbols. Define the Fourier
symbol ST of an operator T to be

STt f u “ pF´1TFqt f u

whenever this is well-defined.

3.3 Fourier Series

By Holder, it suffices for f P L1pTkq to have a well-defined Fourier series pf . Moreover, by Hilbert
space theory, one deduces that F : L2pTnq Ñ l2pTnq is a unitary isometric isomorphism, so one
has convergence of the Fourier series in L2. By Riesz-Thorin, we have F : Lp Ñ lp1

for 1 ď p ď 2.

Definition 3.3. The partial sums of the Fourier series of f on T are given by Sn f “ Dn ˚ f , where

Dnpxq :“
n

ÿ

k“´n

e2πikx “
sinppn ` 1

2 qx
sin x

is the one-dimensional Dirichlet kernel. On Tn, the Dirichlet kernel is Dn “
śN

k“1 DNpxiq.

The Dirichlet kernel is unbounded in L1 and so is not particularly nice to deal with, so we intro-
duce a smoothed version.

Definition 3.4. The Fejer kernel is defined as KN :“ 1
N

řn
n“1 Dn “

p1´cos nxq

np1´cos xq
.

Theorem 3.7. The Fejer kernel is an approximation to the identity.

Remark 3.6. The Fejer and Dirichlet kernels both converge as distributions to the tempered distribution
known as the Dirac comb Φ “

ř

nPZ δpx ´ nq. However, since the Fejer kernel is an approximation to the
identity, we have Kn f Ñ f for all f P LppTnq.
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Lemma 3.8. Sn f Ñ f in Lp iff supn }Sn}p ă 8, where Sn : Lp Ñ Lp.

Proof. One direction is immediate from Banach-Steinhaus, and the other follows from

}Sn f ´ f }p “ }Snp f ´ Kn f q ` Kn f ´ f }p ď sup
n

p}Sn}p ` 1qϵ.

Proposition 3.3. Sn : Lp Ñ Lp are uniformly bounded in Lp iff 1 ă p ă 8.

Corollary 3.8.1. Since Sn is not uniformly bounded in L1 or L8, we get that Sn f Ñ f iff 1 ă p ă 8.

Remark 3.7. By Baire Category, one sees that the set of functions that converge at a particular point is
meager in L1.

Note that one has the following bounds on the decay of certain Fourier coefficients.

(a) If f is absolutely continuous, pf pnq ! 1
n .

(b) If f is a function with bounded variation K, | pf pnq| ď K
2π|n|

.

(c) If f P C0,α with | f |C0,α “ K, | pf pnq| ď K
|n|α .

We now provide a list of results regarding different types of convergence of Fourier series. Note
that the proofs of these results are quite technical and are therefore omitted.

Theorem 3.9. (a) If 1 ă p ă 8, f P Lp, then Sn f Ñ f in Lp.

(b) If f is of bounded variation, then Sn f Ñ f pointwise, and if f is continuous, Sn f Ñ f uniformly.

(c) If f is α-Holder continuous for α ă 1, then Sn f Ñ f uniformly.

(d) Kn f Ñ f a.e., uniformly if f is continuous, and in Lp if f P Lp.

(e) Carleson’s Theorem: For p ą 1, if f P Lp, Sn f Ñ f a.e.

Remark 3.8. (d) follows from the fact that the Fejer kernel is an approximation to the identity, and (a)
follows by Riesz-Thorin.

One may also ask about singly/doubly periodic holomorphic functions.

Proposition 3.4. An entire 1-periodic function has an absolutely convergent Fourier series expansion

f pzq “

8
ÿ

n“´8

ane2πinz

iff lim supn |an|
1
n “ 0. Moreover, every bounded entire 1-periodic function on the upper half-plane has a

Fourier series expansion with only positive terms iff lim supn |an|
1
n ď 1.

Proof. Note that f pzq “ Fpe2πizq for some holomorphic function F : Czt0u Ñ C. Thus, F has a
Laurent series expansion, which gives the Fourier series for f . The converse follows by completing
the argument in the opposite direction. For the half-plane, we note that F : Dzt0u Ñ C, so using
Riemann’s removable singularity theorem yields a bounded holomorphic function with a power
series expansion, which gives the Fourier series for f .

17



3.4 Exercises

Fall 2020 Problem 6 Show that for all odd f P C1r´1, 1s,

} f }L2 ď } f 1}L2 .

Proof. Consider f as a periodic function and consider its Fourier series. By Plancherel,

} f }L2 “ } pf }l2 ď }in pf }l2 “ } f 1}L2 ,

where the inequality holds since |n pf pnq| ě | pf pnq| for n ą 0 and pf p0q “
´ 1

´1 f “ 0.

Spring 2015 Problem 4, Wiener’s Tauberian Theorem Let f P L1pRq. Show that the translates
of f , f px ´ aq, are dense in L1pRq iff pf pξq “ 0. Similarly, show that for f P L2, the translates are
dense iff pf is nonzero a.e.

Proof. This is a well-known result known as Wiener’s Tauberian Theorem. We first show it in L2.
By the properties of the Fourier transform, {f px ´ aq “ e2πiξa

pf pξq. Then, suppose that g P L2 is
orthogonal to all translates of f , i.e.

ˆ
f px ´ aqgpxq “ 0.

By Parseval’s Theorem, this equals
ˆ

pf px ´ aqpgpxq “

ˆ
e2πiξa

pf pξqpgpξq “ 0

for all a P R. In particular, this implies that

F´1r pf pgspaq “ 0.

for all a, and is thus equal everywhere. Since the inverse Fourier transform is injective. This im-
plies that pf pg “ 0, and since pf is nonzero a.e., pg “ 0, i.e. g “ 0 a.e. Conversely, suppose that pf
vanishes on a positive finite measure set X. Since the Fourier transform is an isometry on L2, note
that the translates of f are dense in L2 iff e2πiξa

pf pξq is dense in L2. However, χX P L2 is orthogonal
to all functions of the form e2πiξa, which is a contradiction.

We now prove the more difficult version of this theorem. Suppose pf pξ0q “ 0 for some ξ0 P R.
Then, pfapξ0q “ 0 for all a P R, so the Fourier transform at ξ0 vanishes for all functions in the span.
However, the Fourier transform of a gaussian is everywhere nonzero, which is a contradiction.
The other direction is complicated and over 100 pages in length.

18



Fall 2014 Problem 4 Define X as the set of f P L2pr0, πsq that admit a representation of the form

f pxq “

8
ÿ

n“0

cn cospnxq, }xnycn}2 ă 8.

Show that if f , g P X, then f g P X.

Proof. By Fourier series, note that X is the set of f P L2 such that pf pnq “ pf p´nq. and }xny pf }2 ă 8.
First, if f , g P X, then

xf gpnq “ pf ˚ pgpnq “

8
ÿ

k“´8

pf pn ´ kqpgpkq “

8
ÿ

k“´8

pf pk ´ nqpgp´kq “

8
ÿ

k“´8

pf p´k ´ nqpgpkq “ xf gp´nq.

Moreover, }xnyxf g}2 ď }xny pf ˚ pg}2 ď }xny pf }2}pg}2 ă 8, since pg P l2 for g P L2.

3.5 Convolutions

Recall the definition of a convolution:

Definition 3.5. The convolution of f and g is defined as

f ˚ gpxq “

ˆ
R

f px ´ yqgpyqdy.

Here are some important properties of convolutions:

(a) f ˚ g “ g ˚ f .

(b) p f 1q ˚ g “ f ˚ pg1q “ p f ˚ gq1.

(c) if f is Ck, f ˚ g is Ck.

(d) } f ˚ g}1 “ } f }1}g}1.

These properties provide for the following nice applications:

Theorem 3.10 (Approximation to the Identity). Let f P Lp. Then, if ϕ P C8
c pRnq, }ϕ}1 “ 1, is such

that ϕϵ :“ ϵ´nϕp x
ϵ q Ñ δ as ϵ Ñ 0 (in the sense of distributions), then f ˚ ϕϵ is smooth, limϵÑ0 f ˚ ϕϵ “ f

a.e., normally if f is continuous, and in Lp
loc if f P Lp

loc.

Proof. A.e. convergence follows from Radon-Nikodym and approximating by simple functions.
The other types of convergence follow from the continuity of translation operators on Lp.

The convolution of two functions measures their magnitude of intersection and has the following
nice properties:

Lemma 3.11 (Steinhaus Theorem). if µpAq ą 0, A ´ A contains an open neighborhood of 0.

Proof. We in fact prove a stronger claim: if A, B are distinct sets of positive measure, there exists
an x such that px ´ Aq ´ B contains an open neighborhood of 0.
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Consider the convolution of functions χA ˚ χB. Note that

}χA ˚ χB}1 “

ˆ ˆ
|χApx ´ yqχBpyq|dxdy “ }χA}1}χB}1 “ µpAqµpBq ą 0,

and since χA ˚ χB is continuous, there is an x such that on an open neighbor hood of x, χA ˚ χBpxq ą

0. But this precisely implies that B X py ´ Aq “ ∅ for y P px ´ δ, x ` δq, i.e. δ1 P px ´ Aq ´ B for
|δ1| ă δ.

Corollary 3.11.1 (Young’s Convolution Inequality). Note that for an arbitrary g P Lp, convolution
with g defines a bounded operator T : L1 Ñ Lp and Lq Ñ L8, since by Minkowski,

}T f }p “ } f ˚ g}p “

›

›

›

›

ˆ
f pyqgpx ´ yqdy

›

›

›

›

Lppdxq

ď

ˆ
f pyq}g}pdy ď } f }1}g}p

and
}T f }8 “ sup

ˆ
f pyqgpx ´ yqdy ď } f }q}g}p.

Thus, Riesz-Thorin guarantees that T is bounded as an operator from Lr Ñ Ls, i.e.

} f ˚ g}s ď } f }r}g}p

for
1
s

“ 1 ´ t `
t
q

,
1
r

“
1 ´ t

p
ùñ

1
r

`
1
p

“ 1 `
1
s

.

3.6 Layer Cake and Fubini

Often times, one wants to consider a different integration variable.

Lemma 3.12 (Chebyshev’s Inequality). For f P Lp,

µtx : | f pxq| ą λu ď
} f }

p
p

λp

Proof.

} f }
p
p ě

ˆ
| f |ąλ

| f |p ě µptx : | f pxq| ą λuqλp.

Lemma 3.13 (Layer Cake Decomposition). For f P Lp,

} f }
p
p “

ˆ
X

| f |pdx “

ˆ 8

0
pλp´1µptx : | f pxq| ą λuqdλ.

Proof. By Fubini,
ˆ

X
| f |pdx “

ˆ
X

ˆ | f |

0
pλp´1dλ “

ˆ
X

ˆ 8

0
pλp´1χλă| f pxq|pλqdλdx

“

ˆ 8

0
pλp´1

ˆ
X

χ| f pxq|ąλpxqdxdλ “

ˆ 8

0
pλp´1µptx : | f pxq| ą λuqdλ.

(1)

Note that if f P Lp,w, then one ends up integrating 1
x , which is almost in L1.
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Remark 3.9. Intuitively, this states that the integral of a function can be approximated by horizontal
rectangles lying below the graph of the function of width ∆λ and height µtx : | f | ą λu at λ.

Remark 3.10. For f P Lp, the function λ Ñ µtx : | f | ą λu is called a distribution function. Namely, if
µ is a probability measure and f is a random variable, then this precisely corresponds to the definition of a
cumulative distribution function (cdf) in probability theory, equivalently defining the pushforward measure
ν on R by E Ñ µp f ´1pEqq. Then, the Radon-Nikodym derivative dν

dµ is the probability density function
(pdf) of f .

Definition 3.6. Define the symmetric decreasing rearrangement A˚ of a finite measure A Ă Rn to be
the ball in Rn with the same measure as A. Given f ě 0 P Lp, the symmetric decreasing rearrangement
of f is the unique positive radial function f ˚prq such that

f ˚prq “

ˆ 8

0
χtx:| f |ąλu˚prqdλ.

Note that χtx:| f |ąλu˚prq “ 1 iff r P tx : | f | ą λu˚, i.e. f ˚prq is the largest height λ of f for which the
radius of tx : | f | ą λu˚ is greater than or equal to r.

Remark 3.11. Intuitively, one can think of slicing the peaks of the function f and putting them into the
center, so that the value of f ˚prq is the value of λ at which the volume of the peaks above λ of f exceeds the
volume of the ball of radius r.

Remark 3.12. The defining quality of the symmetric decreasing rearrangement is that µtx : f ą λu “

µtx : f ˚ ą λu.

Lemma 3.14. } f ˚}p “ } f }p.

Proof.

} f }
p
p “

ˆ 8

0
pλp´1µtx : f ą λudλ “

ˆ 8

0
pλp´1µtx : f ˚ ą λu “ } f ˚}

p
p.

3.6.1 Exercises

Fall 2010 Problem 4 Let T : CcpRq Ñ CcpRq be a linear transformation such that

}T f }8 ď } f }8, µtx : |T f pxq| ą λu ď
} f }1

λ
.

Show that }T f }2 À } f }2.

Proof. This is a consequence of the Marcinkiewicz interpolation theorem, and we reproduce a
sample proof below. For f P CcpRq, write f “ g ` h, where g “ f χ

| f |ă λ
2

` λ
2 χ

| f |ě λ
2
. Then,

tx : | f | ą λu Ă tx : |h| ą
λ

2
u Y tx : |g| ą

λ

2
u,
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where the latter set is empty. Then, by the first bound, µtx : |T f | ą λu ď µtx : |Th| ą λ
2 u. Writing

the layer-cake decomposition, we now have

}T f }
p
p “

ˆ 8

0
pλp´1µtx : |T f | ą λudλ

ď

ˆ 8

0
pλp´1µtx : |Th| ą

λ

2
udλ

ď

ˆ 8

0
pλp´2

ˆ
|h|dydλ

ď

ˆ 8

0

ˆ
pλp´2| f ´ f χ

| f |ă λ
2

´
λ

2
χ

| f |ą λ
2
|dxdλ

ď

ˆ ˆ 2| f |

0
pλp´2| f ´

λ

2
|dλdx

ˆ
| f |p´1| f | ` | f |pdx À } f }

p
p.

Fall 2020 Problem 5 Suppose f P L1 is such that
´

E | f | ď
a

|E| for all Borel E Ă r0, 1s. Show that
f P Lp for 1 ă p ă 2, but not necessarily in L2.

Proof. Note that } f }1 ď 1, and moreover,

|tx : | f | ą λu|λ ď

ˆ
| f |ąλ

| f | ď

b

|tx : | f | ą λu|,

i.e.
|tx : | f | ą λu| ď

1
λ2 .

Then, by the layer-cake decomposition, for p ą 2,

} f }
p
p ď

ˆ
| f |ď1

| f |pdx `

ˆ 8

1
pλp´1|x : | f | ą λ|dλ ď 1 `

ˆ 8

1
pλp´3 ă 8

whenever p ă 2. Moreover, 1?
x is in L1pr0, 1sq but not L2pr0, 1sq, and since

?
x ´

?y ď
?

x ´ y for
all x ě y, the inequality holds on open intervals, and therefore on all open sets, so by regularity of
the Lebesgue measure on r0, 1s, it holds for all Borel sets E Ă r0, 1s.

3.7 Density Arguments

Density arguments typically rely on one of the following theorems or statements:

(a) Stone-Weierstrass: A ˚-subalgebra of CpXq for compact Hausdorff X that separates points
and does not vanish at any point is dense in CpXq.

(b) If µ is Borel, characteristic functions of open intervals are dense in characteristic functions
of measurable sets, and the span of characteristic functions (of measurable sets) are dense in
Lp, 1 ď p ď 8.

(c) If X is an LCH space and µ is a Radon measure, CcpXq is dense in LppX, µq for 1 ď p ă 8. In
particular, this holds for every locally finite measure on Rn.
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3.7.1 Exercises

Spring 2020 Problem 4 Show sinpxnq
˚

á 0 in L8pr0, 2sq.

Proof. Note that sinpxnq Ñ 0 on r0, 1q, so by dominated convergence,
´ 1

0 f sinpxnq Ñ 0. For the
interval r1, 2s, we appeal to a density argument, showing that the statement is true whenever f is
the characterstic function of a closed interval. Indeed, for 1 ď a ă b ď 2,

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ b

a
sinpxnqdx

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ bn

an

y
1
n

n
sinpyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

p1 ´ nqbn´1 ´
1

p1 ´ nqan´1 Ñ 0

as n Ñ 8, so by density, the argument is complete.

Spring 2020 Problem 1 Suppose f P C8
c satisfies

´
R

f pxqe´tx2
dx “ 0, for any t ě 0. Show that f

is odd.

Proof. We first reduce the problem by defining the even function gpxq “ f pxq ` f p´xq and showing
that g is identically zero, given that

´
R

gpxqe´tx2
“ 0 for all t ě 0. By symmetry, this implies that´8

0 gpxqe´tx2
“ 0 for all t ě 0. Suppose f is supported on r´R, Rs. Note that the algebra generated

by the functions te´tx2
: t ě 0u on r0, Rs is a unital algebra that separates points, so by Stone-

Weierstrass, it is dense in Cpr0, Rsq in the uniform norm. In particular, one may take an element
a in the algebra such that }a ´ g}8 ă ϵ. Note that the assumptions of the problem imply that´

ga “ 0, so ˆ 8

0
g2dx ď Rϵ}g}1 Ñ 0

as ϵ Ñ 0. Thus, g is identically zero, i.e. f is odd.

3.8 Convexity

Definition 3.7. A function f : X Ñ R is convex if f ptx ` p1 ´ tqyq ď t f pxq ` p1 ´ tq f pyq for all
t P r0, 1s, x, y P X.

Theorem 3.15 (Geometric Hahn-Banach). If X, Y are two closed convex disjoint subsets, then there
exists a hyperplane that separates X, Y.

There is a very deep fact that relates convexity to the weak topology.

Corollary 3.15.1. A convex set A is closed iff it is weakly closed.

Proof. If A is weakly closed and xn Ñ x, then ϕpxnq Ñ ϕpxq for all bounded functionals ϕ, i.e.
x P A. Conversely, if A is convex and closed, we show that Ac is weakly open. Indeed, for a P Ac,
by geometric Hahn-Banach there exists a separating hyperplane between a and A, which precisely
implies that Ac is weakly open.

Theorem 3.16 (Jensen’s Inequality). If f is convex, then f p
ffl

upxqdxq ď
ffl

f pupxqqdx.

Proof. Prove for sums by the definition of convexity, and pass to the limit into the integral.
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Definition 3.8. The subdifferential of a function f : Rn Ñ R at x0 is

B f px0q :“ ty P R : f pxq ě f px0q ` y ¨ px ´ x0q @x P Rnu.

Proposition 3.5. Given some regularity, a convex function can be characterized by the following state-
ments:

(a) If f P C2pRnq, f is convex iff D2 f is everywhere positive semi-definite.

(b) If f P C1pRnq, f is convex iff f pyq ě f pxq ` ∇ f pxqpy ´ xq, i.e. its epigraph is convex.

(c) f : Rn Ñ R is convex iff for all x, B f pxq “ ∅.

Proof. We prove the third statement. If f is convex, Hahn-Banach guarantees the existence of
a supporting hyperplane, which defines a subdifferential. Conversely, taking g P B f pxαq, xα “

αy ` p1 ´ αqx, since
f pyq ě f pxαq ` g ¨ py ´ xαq,

f pxq ě f pxαq ` g ¨ px ´ xαq,

multiply the first equation by α, the second by 1 ´ α and add to get

α f pyq ` p1 ´ αq f pxq ě f pyαq.

Lemma 3.17. A convex function f attains a minimum. x is a minimum of f iff 0 P B f pxq.

Here is an important theorem regarding the regularity of convex functions.

Proposition 3.6. A convex function f : Rn Ñ R is differentiable except on at most a countable set.

Proof. For brevity we show that the set of nondifferentiability has Lebesgue measure 0. We show
that convex functions are locally Lipschitz. We assume without proof that all convex functions on
Rn are continuous. First, suppose f is bounded above on Bpx0, δq. Then, f px0q “ f p

p2x0´xq`x
2 q ď

1
2 f pxq ` 1

2 f p2x0 ´ xq, i.e. f pxq ě 2 f px0q ´ f p2x0 ´ xq, since 2x0 ´ x P Bpx0, δq, so f is bounded.
Then, For x, y P Bpx0, δ

2 q, set

u “ x `
δ

2
px ´ yq

}x ´ y}
,

and suppose f is bounded by M on x, y, u P Bpx0, δq. If α “ δ
2}x´y}

,

x “
1

α ` 1
u `

α

α ` 1
y.

Then,

f pxq ´ f pyq ď
1

α ` 1
f puq `

α

α ` 1
f pyq ´ f pyq “

f puq ´ f pyq

α ` 1
ď

4M
δ

}x ´ y}.

Since f is locally Lipschitz, Rademacher’s theorem implies that f is differentiable a.e.

Definition 3.9. A function f : X Ñ R is lower (upper) semi-continuous if the epigraph (hypograph)
tpx, tq P X ˆ R : f pxq ě pďqtu is closed. Alternatively, f is lower (upper) semi-continuous at x0 if
f px0q ď lim infxÑx0 f pxq ( f px0q ě lim supxÑx0

f pxq.)
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Remark 3.13. Think of upper-semicontinuous functions as functions with only discontinuities that can
jump up and lower-semicontinuous functions with discontinuities that can only jump down.

Proposition 3.7. (a) Indicator functions of open (closed) sets are lower (upper) semi-continuous.

(b) Sums/products of lower/upper semi-continuous functions are lower/upper semi-continuous.

(c) Arbitrary infima (maxima) of upper (lower) semi-continuous functions are upper (lower) semicontin-
uous.

(d) A lower (upper) semi-continuous function on a compact set K attains a minimum (maximum).

(e) (Baire’s Theorem) A lower (upper) semi-continuous function on a metric space X is the monotone
limit of an increasing (decreasing) sequence of continuous functions.

Proof. We prove Baire’s theorem. WLOG, suppose X is compact and f is upper semi-continuous.
Define

fnpxq “ sup
yPX

p f pyq ´ ndpx, yqq.

Clearly, f ď fn for all n. Note that x Ñ dpx, yq is continuous, so fn is the supremum of a se-
quence of continuous functions and therefore lower semi-continuous. Moreover, fn is upper semi-
continuous (since f is), as for xm Ñ x,

fnpxq ě sup
y

p f pyq ´ ndpxm, yq ` npdpxm, yq ´ dpx, yqqq ě lim sup
m

sup
y

p f pyq ´ ndpxm, yqq “ lim sup
m

fnpxmq.

Thus, fn is continuous. Clearly, fn is monotonic. Finally, as n Ñ 8, it is easy to see that fnpxq Ñ

x.

Remark 3.14. The main reason we care about semicontinuity is in the context of optimization problems.
Consider a function F : X Ñ R on a Banach space that is bounded below. Does there exist a minimizer
of this functional? Even if the functional is coercive, i.e. grows at 8, we need some kind of compactness
to obtain a minimizer. If X is reflexive, a minimizing sequence has a weakly convergent subsequence.
Then, it suffices for F to be weakly lower semicontinuous for a minimizer to exist. Moreover, since
F is by assumption lower semicontinuous, if F is convex, one may then conclude that F is weakly lower
semicontinuous. This leads to the following lemma:

Lemma 3.18. If X is a reflexive space and F : X Ñ R is a coercive, convex, lower semicontinuous
functional, then there exists a minimizer for F.

In fact, there is a partial converse to this statement.

Theorem 3.19 (Tonelli). If ϕ is continuous, a functional F : u Ñ
´

ϕpx, uqdx is weakly lower semi-
continuous on LppRnq, 1 ă p ă 8, and weak-˚ lower semicontinuous on L8pRnq iff u Ñ ϕp¨, uq is
convex.

Proof. The backward direction is immediate from the lemma above. Conversely, pick upxq to be
an oscillating function between a, b P Rm so that unpxq :“ upnxq

˚
á ta ` p1 ´ tqb, the average of u.

Then, ϕpunq
˚

á tϕpaq ` p1 ´ tqϕpbq, so on a finite measure set Ω,

µpΩqϕpta ` p1 ´ tqbq “

ˆ
ϕpta ` p1 ´ tqbqdx ď µpΩq lim inf

n

ˆ
ϕpunqdx “ µpΩqptϕpaq ` p1 ´ tqϕpbqq.
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3.9 Lebesgue-Radon-Nikodym Theorem

We know that f ě 0 P L1pXq defines a finite measure µ on X by µpEq “
´

E f dx, and likewise an
arbitrary f P L1 defines a signed measure. Turns out, the converse of this statement is true, and a
finite measure gives rise to an integrable function on a measure space.

Definition 3.10. Let X be a measure space, and let µ, ν be two measures. We say

µ ! ν (µ is absolutely continuous with respect to ν)

if νpEq “ 0 implies µpEq “ 0. Moreover, we say

µ K ν (µ and ν are mutually singular)

if X “ A Y B, where A, B are disjoint, µ is supported on A, and ν is supported on B. A measure ν
is said to be discrete with respect to µ if ν is supported on at most a countable set of elements, each
with positive measure, and ν K µ. One calls a measure singular/absolutely continuous/discrete if it is
singular/absolutely continuous with respect to the Lebesgue measure µ.

Example 3.1. Any discrete measure is singular. The measure given by A Ñ
´

A f dµ, where f is the Cantor
function, is an example of a non-discrete singular measure.

Definition 3.11. An atom in a measure space pX, µq is a set A s.t. µpAq ą 0, and B Ĺ A implies
µpBq “ 0. An atom defines an equivalence class rAs where any two sets differ by a null set. If a σ-finite
measure space consists only of atoms, it is called atomic.

Lemma 3.20. In an atomic measure space, there are at most countably many atomic classes.

Proof. Each atomic class is disjoint and has positive measure, so since X is σ-finite, we are done.

Example 3.2. A measure on r0, 1s that takes the value 1 on co-countable sets and 0 on countable sets is
atomic but not discrete, with one atomic class.

Lemma 3.21 (Absolute Continuity). If µ is a finite signed measure and ν is a measure, then µ ! ν iff
for all ϵ ą 0, there exists δ ą 0 such that |µpEq| ă ϵ whenever νpEq ă δ.

Proof. The backward direction is trivial. For the forward direction, proceed by contradiction.
Then, for some ϵ ą 0, for all δk “ 1

2k , there exists an Ek such that |µpEkq| ě ϵ but νpEkq ă δk.
Then, by the Borel-Cantelli lemma, νplim sup Ekq “ 0 ùñ µplim sup Ekq “ 0. But this is impossi-
ble since

µp

8
č

n“1

ď

kěn

Ekq ě µp
ď

kěn

Ekq ě ϵ.

Now, notice that f P L1pXq defines an absolutely continuous measure on X. Lebesgue-Radon-
Nikodym states that in fact all absolutely continuous measures arise in this way.

Theorem 3.22 (Lebesgue-Radon-Nikodym). Let pX, νq be a σ-finite measure space. Then, if µ is a
σ-finite signed measure such that µ ! ν, there exists f P L1pXq such that

µpEq “

ˆ
E

f dν,
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and such an f is defined uniquely a.e. dν
dµ :“ f is called the Radon-Nikodym derivative of µ w.r.t. ν,

Moreover, if µ is not absolutely continuous, then, µ “ µ1 ` µ2, where µ1 ! ν, µ2 K ν. Additionally,
µ2 “ µd ` µs, where µd is discrete with respect to ν and µs K ν.

Proof. In the case of positive measures, we define

f “ suptg :
ˆ

E
gdν ď µpEq, E Ă X measurableu.

Corollary 3.22.1.

If ν ! µ ! ρ, then dρ
dν “

dρ
dµ

dµ
dν .

Corollary 3.22.2. If ν1 ! µ1, ν2 ! µ2, then

dpν1 b ν2q

dpµ1 b µ2q
“

dν1

dµ1

dν2

dµ2
.

Example 3.3. For a random variable X with an absolutely continuous distribution function F,

ErXs “

ˆ
Ω

XdP “

ˆ
xdP˚ “

ˆ
R

x
dP˚

dµ
dµ “

ˆ
R

x f pxqdx,

where ˆ b

a
f pxqdx “ PpX P ra, bsq.

is the pdf of X.

Example 3.4. Let X “ pr0, 1s, µq and ρ be a Borel measure on X such that µppa, bqq “ b2 ´ a2 and
µpt0uq “ µpt1uq “ 0.5. Then,

ρpEq “ 0.5χ1PE ` 0.5χ0PE `

ˆ
E

xdx,

so
ρ “ ρ1 ` ρ2, ρ1 ! µ,

dρ1

dµ
“ x, ρ2 “ δ0 ` δ1,

where δa is the Dirac delta measure at a.

3.10 Continuous Functions on a Compact Hausdorff Space

Here we list a number of important topological and measure-theoretic results that can be applied
to continuous functions on a compact Hausdorff space X. Sometimes, for sake of generality, we
will want to work over even more general types of sets.

Definition 3.12. Define a topological space X to be locally compact Hausdorff (LCH) if it is Hausdorff
and every point has a base of compact sets.

Example 3.5. Q with the usual topology is a separable Hausdorff metric space, but is not locally compact.
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Definition 3.13. A subset A Ă CpXq separates points if for any x, y P X there exists f P A such that
f pxq “ f pyq.

Theorem 3.23 (Urysohn’s Lemma). Let X be a compact Hausdorff space. Then, for any two disjoint
closed subsets A, B of X, there exists f P CpXq such that f pAq “ 0, f pBq “ 1.

Corollary 3.23.1. If X is compact Hausdorff, CpXq separates points.

Definition 3.14. A subset A Ă CpXq is equicontinuous if for all ϵ ą 0, there exists δ ą 0 such that for
all f P A, |x ´ y| ă δ ùñ | f pxq ´ f pyq| ă ϵ.

Theorem 3.24 (Arzela-Ascoli). A subset of CpXq is relatively compact iff it is equicontinuous and bounded.

Corollary 3.24.1. If A Ă C1pXq is bounded, A is relatively compact in CpXq.

Theorem 3.25 (Stone-Weierstrass Theorem). If A Ă CpXq is a unital C˚-algebra (i.e. A is closed under
conjugation), A is dense in CpXq iff it separates points.

In fact, one has the following generalization:

Corollary 3.25.1 (Stone-Weierstrass). If X is a locally compact Hausdorff space, then a subalgebra A Ă

C0pXq is dense iff it separates points and if there is no x P X such that A vanishes on x.

Proof. Here is a sketch of the proof: you show that for f , g P A, | f | P A, minp f , gq P A, maxp f , gq P

A. Then, you construct a sequence of functions gx that match f on certain points and are above
it otherwise and use local compactness to cover X with those functions. Then, do the same with
those functions from below to conclude.

3.11 Riesz Represenation Theorem and Convergence of Measures

In this section, our goal is to connect the regularity properties of continuous and integrable func-
tions, which will require some restrictions on the spaces and measures that we’re dealing with.
Our goal is to build up to the Riesz Representation theorem, which provides a direct description
of the dual of CpXq.

Definition 3.15. A Borel measure µ is called a Radon measure if µ is finite on compact subsets
(f.o.c.s.), inner regular on open sets, i.e.

µpUq “ sup
KĂU,K compact

µpKq

for U open, and outer regular on Borel sets, i.e.

µpOq “ inf
OĂU,U open

µpUq

for O Borel. If µ is both inner and outer regular on Borel sets, µ is called regular.

Remark 3.15. Note that a regular measure is a slightly stronger condition than a Radon measure.

Remark 3.16. A Radon measure µ on a LCH space X is in fact inner regular on all σ-finite sets. Thus,
a σ-finite Radon measure on an LCH space X is regular. This shows that for σ-finite measures on LCH
spaces, there is no difference between Radon and regular measures.

Theorem 3.26. If X is an LCH space s.t. every open set is σ-compact, then every f.o.c.s. Borel measure is
Radon, and therefore also regular (since σ-compact ` finite on compact subsets ùñ σ-finite).
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Corollary 3.26.1. If X is a separable LCH metric space, every f.o.c.s Borel measure is regular.

Corollary 3.26.2. If X is a complete separable metric space (i.e. a Polish space), every f.o.c.s. Borel
measure is regular.

Remark 3.17. The condition that every open subset be σ-compact is important, as there exists a separable
LCH σ-compact space for which this does not hold.

Corollary 3.26.3. Every f.o.c.s. Borel measure on Rn is regular.

Definition 3.16. The (total) variation of a signed measure µ is given by the Jordan decomposition
|µ|pXq “ µ`pXq ´ µ´pXq. More generally, if µ is complex,

|µ|pXq “ sup
π

ÿ

APπ

|µpAq|,

where π is a countable partition of X.

Definition 3.17. If X is a topological space, define CcpXq Ă C0pXq Ă CbpXq to be the spaces of compactly
supported, vanishing at infinity, and bounded functions on X, all with the supremum norm. A function f
is said to vanish at 8 if for all ϵ ą 0, | f | ă ϵ outside a compact set K Ă X.

Lemma 3.27. If X is an LCH space, then C0pXq, CbpXq are Banach spaces, and the closure of CcpXq is
C0pXq.

Proof. The first two claims directly follow from the fact that X is locally compact. The second is a
simple consequence of Urysohn’s lemma.

Corollary 3.27.1. If X is compact, CpXq “ C0pXq “ CbpXq “ CcpXq.

Theorem 3.28 (Riesz-Markov-Kakutani). If X is an LCH space, then C0pXq˚ – MbpXq, the space of
complex Radon measures with finite variation on X (i.e. measures such that Re µ, Im µ are Radon), under
the equivalence

ϕp f q “

ˆ
X

f pxqdµϕpxq,

and with }ϕ} “ |µϕ|pXq. Moreover, positive functionals on C0pXq are isometrically isomorphic to finite
Radon measures.

Corollary 3.28.1. MbpXq equipped with the total variation norm is a Banach space.

Proof. By Riesz representation, since MbpXq “ C0pXq˚, and a dual of a space is always Banach,
we conclude.

Corollary 3.28.2. If every open set in X is σ-compact, then C0pXq˚ – MbpXq – BbpXq, the space of
finite complex Borel measures on X with the total variation norm. In particular, this is true for separable
LCH metric spaces X.

Intuitively, we conclude that the necessity of working over a separable metric space is what makes
Radon and Borel measures equivalent, and the LCH property is what is required by the Riesz
Representation theorem itself.

Example 3.6. Any bounded linear functional on C0pRnq is given by a finite Borel measure.

Proposition 3.8. If X is a compact Hausdorff metric space, CpXq is separable.
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Proof. Let A Ă X be a dense countable subset and consider the countable unital Q-subalgebra
generated by 1 and hapxq “ dpa, xq for a P A. It clearly separates points, so by Stone-Weierstrass, it
is dense in X.

Proposition 3.9. If µn is a bounded sequence of Borel measures on a compact Hausdorff metric space X,
there exists a Borel measure µ and a subsequence µnk such that

ˆ
f dµnk Ñ

ˆ
f dµ

for all f P CpXq.

Proof. Since CpXq is separable, by Banach-Alouglu, a bounded ball in CpXq˚ – BpXq is weak-˚

sequentially compact.

Proposition 3.10. If X is a compact metric space, the set M1 of probability measures on X with the weak-˚

topology is a compact metric space.

Proof. M1 is homeomorphic to the subset of positive linear functionals of norm 1 with respect
to the weak´˚ topology. Since CpXq is separable, by Banach-Alaouglu, this subset is weak-˚ se-
quentially compact and the weak-˚ topology is in fact metrizable. Thus, M1 is a compact metric
space.

While we have considered a lot of different kinds of convergence for functions, the equivalence
of functions and measures (due to Radon-Nikodym) suggests a number of definitions for the con-
vergence of measures.

Definition 3.18. One says that µn Ñ µ strongly or setwise if µnpAq Ñ µpAq for all measurable A. One
says that µn Ñ µ vaguely (or weak-˚) if for all f P C0pXq,

´
f dµn Ñ

´
f dµ. Similarly, one says that

µn Ñ µ weakly of for all f P CbpXq,
´

f dµn Ñ
´

f dµ.

Remark 3.18. Weak convergence is a misnomer, since CbpXq “ M˚
b .

It is easy to see that strong convergence implies weak and weak-* convergence. The following
theorem provides a partial converse.

Theorem 3.29 (Portmanteau Lemma). Given a metric space X, TFAE:

(a) µn á u.

(b) lim inf µnpOq ě µpOq for all open O Ă X.

(c) lim sup µnpKq ď µpKq for all closed K Ă X.

(d) lim inf
´

f dµn ě
´

f dµ for all lower semicontinuous bounded below f .

(e) lim sup
´

f dµn ď
´

f dµ for all upper semicontinuous bounded above f .

(f) lim µnpAq “ µpAq for all A with µpBAq “ 0.

Proof. we show paq ùñ pcq. For K closed, define Kn “ tx : dpK, xq ď 1
n u, and let Fk be a continuous

function that is 1 on K and 0 on Kc
n. Then,

lim sup
n

µnpKq ď lim sup
n

ˆ
Fkdµn Ñ

ˆ
Fkdµ ď µpKnq.
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Taking n Ñ 8 completes the proof. By taking complements, one sees that pbq is equivalent to pcq.
Using Baire’s theorem to monotonically approximate upper (lower) semiicontinuous functions
yields equvialence with (d) and (e). Together, pbq and pcq imply pdq, since

lim sup µnpAq ď µpAq, lim inf µnpAoq ě µpAoq.

To see that pbq ùñ paq, note that by Fatou,

lim inf
ˆ

f dµn “ lim inf
ˆ 8

0
µntx ą λu ě

ˆ 1

0
lim inf µnt f ą λu ě

ˆ
µt f ą λu “

ˆ
f dµ

and replacing f with ´ f completes the proof.

Definition 3.19. For f : pX, µq Ñ pY, νq, the pushforward measure associated to f on Y is µ f pBq :“
µp f ´1pBqq.

Example 3.7. If f pxq “ c is constant, µ f is the Dirac measure on c.

Remark 3.19. The defining property of pushforward measures for g : Y Ñ Z is
ˆ

g ˝ f µ “

ˆ
gdµ f

Definition 3.20. We say fn Ñ f in distribution if µ fn á µ f .

In fact, we have an analogue of Arzela-Ascoli for measures.

Theorem 3.30 (Prokhorov’s Theorem). Let S be a separable metric space, and M1pSq be the space of
Borel probability measures on S. Then, a subset A Ă M1pSq is weakly precompact iff it is tight. Moreover,
if S is complete, then the weak topology is completely metrizable.

Proof. If A is tight, the rougly speaking, one can pick a countable subsequence of sets and use a
diagonal argument to find a convergent subsequence on those sets, and extend it to a weak limit
by regularity of the measure.

Conversely, suppose A is weakly precompact. Note that K Ă S is compact iff

K “
č

j

Nj
ď

i“1

Bpxi,
1
j
q,

where txiu is a countable dense subset of S. If for every j we can find an Nj such that

µ

¨

˝

Nj
ď

i“1

Bpxi,
1
j
q

˛

‚ą 1 ´ p1 ´
1
2j qϵ

for all µ P A, then K as above would satisfy µpKcq ă ϵ for all µ P A. If not, then there exists a j
such that for all Nj there is a sequence of measures µk

˚
á ν such that

µk

¨

˝

Nj
ď

i“1

Bpxi,
1
j
q

˛

‚ď 1 ´ p1 ´
1
2j qϵ.

But picking Nj to cover S in the limit, we then get νpSq ď 1 ´ p1 ´ 1
2j qϵ, a contradiction.
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3.12 Measure Theory

Lemma 3.31 (Borel-Cantelli). (a) If
ř

µpAnq ă 8, then µplim sup Anq “ 0.

(b) If µ is a probability measure,
ř

µpAnq “ 8, and µpAk X Ajq “ µpAkqµpAjq, then µplim sup Anq “

µpXq.

Proof. We prove (b). Indeed, it suffices to show that lim supn µp
Ş

něN Ac
nq “ 0, as

µplim sup Anq “ µ

˜

č

N

ď

něN

An

¸

ě lim inf µ

˜

ď

něN

An

¸

“ 1 ´ lim sup
n

µ

˜

č

něN

Ac
n

¸

.

Now, since the An are indepenent, one can easily check that

µpAc
k X Ac

j q “ µpXq ´ µpAk Y Ajq “ µpXq ´ µpAkq ´ µpAjq ` µpAkqµpAjq “ µpAc
kqµpAc

j q,

so µp
Ş

něN Ac
nq “

ś8
n“Np1 ´ µpAnqq Ñ 0, since

ř

logp1 ´ µpAnqq „ ´
ř

µpAnq “ ´8.

Here are some common counterexamples used in measure theory:

Example 3.8. (a) The Cantor set C - it is a closed nowhere dense subset of r0, 1s of measure zero.

(b) The fat Cantor set Cα - it is a closed nowhere dense subset of r0, 1s of measure α P p0, 1q.

(c) Define the Cantor function as follows - let c : C Ñ r0, 1s be defined by replacing all the 2’s in the
expansion of a number with 1’s and extending the function to be locally constant on the remaining
intervals. Then, f is monotonic uniformly continuous (in fact, Holder continuous) but not absolutely
continuous.

(d) If Cpxq “ cpxq ` x, then Cpxq is a homeomorphism between r0, 1s and r0, 2s, as it is a bijective
continuous map from a compact to a Hausdorff space. In particular, f maps Borel sets to Borel sets,
and if N Ă CpCq is a nonmeasurable set, f ´1pNq Ă C is a Lebesgue measurable set, but not Borel
measurable set, as f p f ´1pNqq “ N is not Borel. Moreover, χ f ´1pNq is a Lebesgue but not Borel
measurable function.

(e) Every subset of a null set is Lebesgue measurable since the Lebesgue measure is complete. Moreover,
by an analogue of the Vitali set construction, every positive measure set contains a nonmeasurable
subset.

How does one formally construct a measure? That is the question answered by the Caratheodory
theorem.

Theorem 3.32 (Caratheodory Extension Theorem). Let A be an algebra (i.e. closed under finite inter-
sections and complements) of subsets of a set X. Then, a premeasure (that is, a measure on the algebra) ν
extends to an outer measure µ˚ on PpXq, which restricts to a measure µ on the σ-algebra of µ-measurable
sets, i.e. sets A for which

µ˚pEq “ µ˚pE X Aq ` µ˚pE X Acq

for all E P PpXq. Moreover, if ν is σ-finite, µ is unique.

Example 3.9. If µ is the counting measure on R and ν is the infinite measure, then they agree on all cofinite
sets, but not on the Borel σ-algebra.
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If two measures agree on a set that generates a σ-algebra, do they agree on that σ-algebra? Turns
out the answer is yes under certain conditions. There are two theorems that allow us to relax our
hypotheses.

Theorem 3.33 (Monotone Class Theorem). If A is an algebra closed under countable increasing unions
and countable decreasing intersections, then it is a σ-algebra.

Theorem 3.34 (Dynkin’s π ´ λ theorem). If A is a π-system, i.e. a class closed under finite intersections,
then the σ-algebra it generates is the same as its Dynkin class, i.e the class generated by disjoint unions
and complements in A.

Proposition 3.11. If two finite measures µ, ν coincide on a class C closed with respect to finite intersections,
then they coincide on the σ-algebra B it generates.

Proof. The measures agree on a class generated by C generated by disjoint unions and comple-
ments.

Corollary 3.34.1. Two finite measures on a topological space that agree on all open (closed) sets agree
everywhere. In particular, the Lebesgue measure on Rn is unique.

Remark 3.20. One cannot relax the assumption to σ-finite measures. As a counterexample, consider

mpAq “ |A X Q|, npAq “ |A X pQ Y t
?

2uq|

with respect to the counting measure | ¨ |. Since Q is countable, these measures are σ-finite and they agree
on the algebra of half-open intervals, but clearly not on all Borel sets, since the restriction to the half-open
intervals is not σ-finite. This is because

Theorem 3.35 (Disintegration Theorem). Let X, Y be two Radon spaces (i.e. spaces where every finite
Borel measure is Radon), µ P M1pYq, π : Y Ñ X be a measurable function, and ν “ µ ˝ π´1 P M1pXq be
the pushforward measure. Then, there exists a family of probability measures µx P M1pYq for x P X such
that µx is supported on π´1pxq and

ˆ
Y

f pyqdµpyq “

ˆ
X

ˆ
π´1pxq

f pyqdµxpyqdνpxq.

Roughly, Y should be thought of as being "parametrized by X," with π being the projection map.

Proof. Note that for B Ă Y, A Ă X measurable, the disintegration formula should satisfy
ˆ

π´1pAq

χBdµ “

ˆ
A

µxpBqdν.

Using the Lebesgue differentiation theorem, we can then extract µx by defining

µxpBq :“ lim
ϵÑ0

1
νpAϵq

ˆ
π´1pAϵq

χBdµ “ lim
ϵÑ0

1
µpπ´1pAϵqq

ˆ
π´1pAϵq

χBdµ

over neighborhoods Aϵ that shrink to x.

Often times, we are interested in measuring the "dimension" of a set. We define the dimension
according to how scaling the object affects its measure. This motivates the following definition.
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Definition 3.21. Let X be a metric space. Define

Hd
δ pSq “ inf

8
ÿ

i“1

pdiam Uiq
d

over all countable covers of S by sets with diam Ui ă δ. We define the d-dimensional Hausdorff mea-
sure to be the Borel measure obtained from the Caratheodory restriction of the outer measure HdpSq “

supδą0 Hd
δ pSq.

Remark 3.21. Restricting to certain classes of sets Ui (like open or closed) might change the measures but
does not change the dimension of a set.

Remark 3.22. For d P N one has λd “ βdHd, where λd is the d-dimensional Lebesgue measure and βd is
the volume of the d-dimensional unit ball.

Definition 3.22. For every set S Ă X, there exists a unique d P r0, 8s s.t. Hd1

pSq “ 0 for d1 ą d and 8

for d1 ă d. We call d1 the Hausdorff dimension of S.

3.13 Oscillatory Integrals

Many times in harmonic analysis, one aims to asymptotically estimate the magnitude of an inte-
gral of the form ˆ

apxqeiλϕpxqdx.

The theory of oscillatory integrals and the method of stationary phase are powerful tools for esti-
mating such integrals. First, one has the trivial bound

Ipλq :“
ˇ

ˇ

ˇ

ˇ

ˆ
J

eiλϕpxqdx
ˇ

ˇ

ˇ

ˇ

ď µpJq.

This bound is achieved iff ϕ is constant, so the decay of this integral is linked to the noncostancy
of ϕ. One way to achieve this is to require |ϕ1| ě c ą 0. However, that turns out to be not enough.
One additional assumption, for instance, is monotonicity.

Lemma 3.36 (Van der Corput). If ϕ : R Ñ R is smooth, |ϕ1| ě c ą 0, and ϕ1 is monotonic, then
|Ipλq| ! 1

cλ .

Proof. Integrating by parts and using fundamental theorem of calculus on the second integral,

Ipλq “

ˆ b

a

1
iλϕ1pxq

d
dx

eiλϕpxqdx “

„

1
iλϕ1pxq

eiλϕpxq

ȷb

a
´

1
iλ

ˆ b

a

d
dx

„

1
ϕ1pxq

ȷ

eiλϕpxqdx “ Op
2

cλ
q ` Op

2
λc

q ““ Op
1

λc
q.

Corollary 3.36.1. Inductively, one has that
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4 Lebesgue Differentiation Theorem

Here we cover an extremely important theorem that allows us to "differentiate" Lp functions. For
this, we first need to introduce a lot of heavy machinery.

Definition 4.1. For f P L1
loc, define the Hardy-Littlewood maximal function to be

Hp f qpxq “ sup
xPB

1
|B|

ˆ
B

| f |dt,

where B is an open ball. In other words, H is the maximal average of f on any ball containing x.

We begin with some basic properties.

Proposition 4.1. Hp f q is measurable and finite a.e. Moreover, H f : L1 Ñ L1,w is of weak type p1, 1q.

Proof. Note that tx : Hp f q ą λu are open, since if supxPB
1

|B|

´
B | f |dt ą λ, for all points y nearby,

y P B, and so the supremum is also greater than λ. We now introduce with a key lemma.

Lemma 4.1 (Vitali Covering Lemma). Given a cover by open balls of a metric space X, there exists a
finite subset Bn1 , ..., Bnk such that 3Bn1 , ..., 3Bnk is a cover of X.

Proof. Inductively pick balls of the largest radius disjoint from all the ones currently picked, and
let Y “ 3Bn1 Y ... Y 3Bnk . If B is one of the balls picked, then B Ă Y. Otherwise, by maximality B
intersects at least one of these balls Bk, and so B Ă 3Bj.

Now, if Eλ “ tx : Hp f q ą λu, then for each Eλ is covered by open balls Bn with

1
λ

ˆ
Bn

| f |dt ą |Bn|,

so covering a compact subset K Ă Eλ by finitely many balls using the lemma, one obtains

|K| ď 3d
k

ÿ

i“1

|Bnk | ď
3d

λ

ˆ
Rd

| f |dt,

where we use the fact that the balls are disjoint in the integral over Rd. Since the Lebesgue measure
is regular, we are done. Moreover, the weak bound implies that µt f ˚ “ 8u “ 0, so f ˚ is finite
a.e.

Corollary 4.1.1. Since Hp f q is trivially of strong type p8, 8q, by the Marcinkiewicz interpolation theorem,
Hp f q is of strong type pp, pq for 1 ă p ď 8.

What follows is a powerful consequence known as the Lebesgue differentiation theorem.

Theorem 4.2 (Lebesgue Differentiation Theorem). If f P L1
loc, for a.e. x,

lim
xPB,|B|Ñ0

ˆ
B

| f pyq ´ f pxq|dy “ 0.
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In particular,

lim
xPB,|B|Ñ0

ˆ
B

f pyqdy “ f pxq

a.e. Any x for which this holds is called a Lebesgue point, implying that a.e. point is a Lebesgue point of f .

Proof. It suffices to show that the set

Eλ “ tx : lim sup
ˇ

ˇ

ˇ

ˇ

1
|B|

ˆ
B

f pyq ´ f pxqdy
ˇ

ˇ

ˇ

ˇ

ą 2λu

has measure 0 for all λ. Approximating f in L1 with a continuous function g with compact support
so that } f ´ g}1 ă ϵ and noting that the limsup vanishes for continuous functions,

lim sup
1

|B|

ˇ

ˇ

ˇ

ˇ

ˆ
B

f pyq ´ f pxqdy
ˇ

ˇ

ˇ

ˇ

ď p f ´ gq˚pxq ` | f pxq ´ gpxq|.

If
Fλ “ tx : p f ´ gq˚pxq ą λu, Gλ “ tx : | f pxq ´ gpxq| ą λu,

then Eλ Ă Gλ Y Fλ. But by Chebyshev and Hardy-Littlewood for f ´ g, this implies

|Eα| ď |Gα| ` |Fα| ď
C
α

ϵ,

and sending ϵ Ñ 0 completes the proof. Now, for the general case, enumerate the rationals and
apply the proof to the function | f pyq ´ r|, with E “

Ť

r Er, where Er is the set where the previous
theorem fails. Then, for x R E,

1
|B|

ˆ
B

| f pyq ´ f pxq|dy ď
1

|B|

ˆ
B

| f pyq ´ r|dy ` | f pxq ´ r|,

and the proof is complete.

Corollary 4.2.1. Let dν “ dλ ` f dµ be the Lebesgue-Radon-Nikodym representation of ν. Then,

lim
rÑ0

νpErq

µpErq
“ f pxq.

for any family Er shrinking nicely to x and a.e. x.

Proof. It suffices to prove that

lim
rÑ0

λpErq

µpErq
“ 0

for a.e. x. WLOG, assume that Er are open balls. We will show that

Fk “

"

x P A : lim sup
rÑ0

λpBpx, rqq

µpBpx, rqq

*

ą
1
k

has measure zero, where A contains the support of µ. Recall that since λ K µ, by regularity of λ,
one may pick A such that λpAq ă ϵ. By the same argument as in the proof of Hardy-Littlewood,
we cover compact subsets K of Fk by balls on which

µpKq ď 3d
n

ÿ

k“1

µpBnk q ď 3dkλpAq ă 3dkϵ,

and we are done.
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Example 4.1. There cannot exist a subset A Ă r0, 1s such that µpAq ă 1 and µpA X Bq ą λµpBq for
λ P p0, 1q and all balls B, as LDT would imply that χA ě ϵ ùñ χA “ 1 a.e.

Corollary 4.2.2. A monotonic function f is differentiable a.e.

Proof. Recall that to any right-continuous, monotone function F there exists an associated Borel
measure µF such that µFppa, bsq “ Fpbq ´ Fpaq. The Lebesgue-Radon-Nikodym derivative of this
measure is (up to some minor technicalities) our derivative F1.

4.1 BV and the Fundamental Theorem of Calculus

A fundamental result from undergraduate analysis is the Fundamental Theorem of Calculus,
which states:

Theorem 4.3. (FTOC)

(a) If f is continuous, Fpxq “
´ x

0 f ptqdt is differentiable and F1pxq “ f pxq.

(b) If F is an antiderivative of a Riemann integrable function f , then Fpbq ´ Fpaq “
´ b

a f ptqdt.

Our goal in this section is to prove the most general version of this theorem.

4.1.1 Bounded Variation

Definition 4.2. A function is said to be of bounded variation (BV) on ra, bs if for any sequence of intervals
as above,

řn
i“0 | f pbiq ´ f paiq| ă 8. We define the total variation function TF of F to be

TFpxq “ sup
bn“x

n
ÿ

i“0

| f pbiq ´ f paiq|.

More generally, define the class BVpΩq of functions of bounded variation as a subspace of L1 such that
the total variation

Vpuq :“ sup
ϕ

ˆ
Ω

u divpϕqdx ă 8,

where }ϕ}8 ď 1 and ϕ is a C1 vector field on Ω. Note that for ϕ « ´ ∇u
|∇u|

, this gives that Vpuq ď´
Ω |∇u|dx “ }∇u}1 whenever ∇u is well-defined.

Remark 4.1. More simply put, BVpΩq is the space of functions u with norm }u}TV “ }u}1 ` Vpuq whose
distributional derivative Du is a finite Radon measure and satisfies

xdivpϕq, uy “ xϕ, Duy.

This can be seen by defining the action of the linear functional Du according to the above formula on C1,
extending to C0 by Hahn-Banach and constructing the appropriate measure using the Riesz Representation
Theorem. Additionally, }Du}TV “ Vpuq.

Remark 4.2. Note that on W1,1pΩq Ă BVpΩq, }u}TV “ }u}W1,1 . In general, however, functions in
W1,1pΩq cannot have jump discontinuities since they admit weak derivatives, and so the space BVpΩq

is strictly larger than W1,1pΩq.

Theorem 4.4 (Helly’s Selection Theorem). Let un : R Ñ R be a sequence of increasing functions
uniformly bounded in Lp for p ą 1. Show that un has a subsequence that converges in Lq

loc for q ă p.
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Proof. Let K be the complement of the set of points of discontinuity of any of the functions, which
is countable and therefore measure 0. Extract a convergent subsequence unk Ñ u on K. Then,
extend u according to upxq “ lim supyďx upyq. Clearly, u is positive, increasing and monotone. By
regularity of Lebesgue measure, if u is continuous at x, unpq1q ď unpxq ď unpq2q implies as n Ñ 8

that
|unpxq ´ upxq| ď supt|upq2q ´ unpq1q|, |unpq1q ´ upq2q|u,

and for q1, q2 close enough to x and n large enough, this is bounded by ϵ. Thus, un Ñ u pointwise
except at most on a countable set. Picking a further subsequence, one may assume that unk con-
verges to u pointwise everywhere. The rest of the argument follows immediately from uniform
integrability and the Vitali convergence theorem.

Proposition 4.2. BVpΩq is a Banach algebra with the norm } f }BV “ } f }1 ` Vp f q, and V is convex lower
semi-continuous on L1 and continuous on BVpΩq.

Proof. Lower semi-continuity of V follows from Fatou’s lemma, which directly implies that BVpΩq

is Banach. We take as a given that functions in BVpΩq satisfy the chain rule, and therefore the
product rule. This implies that the product of BV functions is BV, so BVpΩq is in fact a Banch
algebra.

Proposition 4.3. The inclusion BVpΩq ãÑ L1pΩq is compact.

Proof. Recall Rellich-Kondrachov, which says that if Ω is bounded and p˚ is the Sobolev conjugate
of p, then W1,ppΩq embeds into LqpΩq for 1 ď q ď p˚, where for q ă p˚ the embedding is compact.
Approximating a BV function u by smooth functions with uniformly bounded derivatives and
applying Rellich-Kondrachov then yields a convergent subsequence in L1.

Remark 4.3. On R, the compact embedding is a consequence of Helly’s selection theorem, since a family
of uniformly bounded monotone functions is precompact and every BV function is a sum of monotone
functions.

Proposition 4.4. Monotone functions are differentiable a.e. with derivative in L1
loc.

Proof. WLOG, suppose f : r0, 8q Ñ r0, 8q is increasing and f p0q “ 0. Then, f defines a premea-
sure according to µppb ´ asq “ f pbq ´ f paq, which then extends to the corresponding Lebesgue-
Stiltjes measure d f by Caratheodory’s extension theorem. Then, by the Radon-Nikodym theo-
rem, one can write µ “ λ ` ρ, where λ is absolutely continuous with respect to the Lebesgue
measure m. Moreover, by the Lebesgue differentiation theorem, one has that f 1 “ dλ

dm a.e. In par-
ticular, one immediately sees that

´ b
a f 1 ď f pbq ´ f paq, with equality iff ρ “ 0, which implies that

f 1 P L1
loc.

Remark 4.4. Lebesgue’s differentiation theorem gives us a unique decomposition of every monotonic func-
tion F “ FAC ` Fd ` Fs, where FAC is absolutely continuous (and therefore continuous), Fd is a jump
function, and Fs is a continuous singular function with derivative 0 a.e.

It is immediately clear that (bounded) monotonic functions are of bounded variation. One now
aims to obtain a decomposition of a BV function.

Proposition 4.5. F PBV iff F “ 1
2 pTF ` Fq ´ 1

2 pTF ´ Fq, where TF ` F, TF ´ F are increasing.
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Proof. Note that TFpbq ´ TFpaq ě |Fpaq ´ Fpbq| by the definition of TF. Conversely, the sum of two
BV functions is still BV.

Remark 4.5. This is known as the Jordan decomposition of f .

Corollary 4.4.1. Since monotone functions are continuous except at most on a countable set, so are func-
tions in BVpra, bsq. In fact, BV functions are differentiable a.e. (with derivative in L1). One may ask
whether the converse is true, but it is not. Indeed, adding a bunch of Cantor functions alternating accord-
ing to a conditionally convergent series convergent to 0 on intervals with rational endpoints shows that
there exists a function which is differentiable a.e. with derivative in L1, but is not BV on any subinterval.

Remark 4.6. On R, we see that BV functions are preicsely those functions whose derivatives are signed
Lebesgue-Stieltjes measures.

4.1.2 Absolute Continuity and FTOC

We want to develop a generalization of the FTOC to Lebesgue measurable functions. For that,
we first need to understand the properties of integrals of L1 functions. For f P L1,

´ x
a f ptqdt is

easily seen to be continuous, but it is in fact in a stronger class of so-called absolutely continous
functions.

Definition 4.3. A function f is absolutely continuous (AC) on ra, bs if for any finite set of disjoint open
intervals pa0, b0q, ..., pan, bnq, ai ă bi ă ai`1, for every ϵ ą 0 there exists δ ą 0 such that

řn
i“0 | f pbiq ´

f paiq| ă ϵ whenever
řn

i“0 |bi ´ ai| ă δ.

From the definition, we immediately see that AC Ă BV. Moreover, note that for F P BV, the
corresponding signed Lebesgue-Stieltjes measure µF :“ µ` ´ µ´, where µ`, µ´ are the measures
corresponding to the Jordan decomposition of F, satisfies µF ! m (where m is the Lebesgue mea-
sure) iff the FTOC holds (since the singular part of the Lebesgue decomposition is trivial). We now
claim that this condition is precisely that of F being absolutely continuous.

Lemma 4.5. µF ! m iff F is absolutely continuous.

Proof. The forward direction is immediate by applying absolutely continuity to a disjoint union of
open intervals. Conversely, if mpEq “ 0, by regularity there exist open U1 Ą U2 Ą ... converging to
E, which are a countable union of open intervals. Then µFpUjq ă ϵ for large enough j in the limit
of taking N Ñ 8 intervals, so µFpEq “ 0.

Corollary 4.5.1. This argument directly shows that a continuous function F of bounded variation is abso-
lutely continuous iff mpEq “ 0 ùñ µFpEq “ mpFpEqq “ 0.

To answer the question of whether the two are equal, we first describe a generalization of the
classical FTOC for the Lebesgue integral.

Proposition 4.6. If f is everywhere differentiable and f 1 P L1, then f is absolutely continuous, i.e. the
FTOC holds.

Proof. Find a lower semi-continuous g s.t. g ą f 1 and
´

g ă
´

f 1 ` ϵ. Define

Fηpxq “

ˆ x

a
gptqdt ´ p f pxq ´ f paqq ` ηpx ´ aq.
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For t ą x close enough to x, one can ensure that

gptq ą f 1pxq,
f ptq ´ f pxq

t ´ x
ă f 1pxq ` η.

Then,
Fηptq ´ Fηpxq ą pt ´ xq f 1pxq ´ pt ´ xqp f 1pxq ` ηq ` ηpt ´ xq “ 0.

Since Fη is continuous and η ą 0 is arbitrary , this implies that Fηpbq ě 0, i.e. f pbq ´ f paq ď
´ b

a g ă´
f 1 ` ϵ, and applying the same argument to ´ f concludes the proof.

Remark 4.7. The Cantor function shows that differentiability everywhere cannot be weakened to differen-
tiability a.e. However, a nontrivial generalization of this statement lets one relax everywhere differentiability
to f being differentiable everywhere except on at most a countable set.

We now want to classify absolutely continuous functions in terms of BV functions. Clearly, abso-
lutely continuous functions are continuous. WLOG, suppose that for some F P L1, TFp´8q “ 0.
Then, we have the following theorem:

Theorem 4.6. (FTOC, Lebesgue Version) TFAE:

(a) F is absolutely continuous.

(b) There exists f P L1 s.t. Fpxq “
´ x

a f ptqdt.

(c) F is differentiable a.e. with F1 P L1 and Fpbq ´ Fpaq “
´ b

a F1ptqdt.

Proof. (b) ùñ (a): This follows from the fact that integrals define absolutely continuous measures
w.r.t. to the Lebesgue measure.
(c) ùñ (b): Trivial.
(a) ùñ (c): Since AC Ă BV, F has a derivative f defined a.e. Moroever, we have shown that if F is
absolutely continuous, then µF ! m, and so by Lebesgue decomposition, the FTOC is satisfied.

To summarize, here are the properties of AC and BV functions:

(a) F P BV iff F is the sum of monotone functions iff there exists a Lebesgue-Stieltjes measure
µF, in which case F is continuous except at most on a countable set and differentiable a.e.
with F1 P L1. The oscillating Cantor function shows that the converse is not true.

(b) F P BV is absolutely continuous iff µF ! m iff the FTOC holds iff F is continuous and mpEq “

0 ùñ mpFpEqq “ 0, as the singular part of the Lebesgue decomposition dµ f “
dµF
dm dm ` dλ

is zero. In particular, if F is differentiable except on at most a countable set with F1 P L1, F is
absolutely continuous.

Theorem 4.7 (The Generalized Fundamental Theorem of Calculus). As a consequence of this machin-
ery, we have the following general characterization of the Fundamental Theorem of Calculus:

(a) If f is differentiable everywhere, f 1 need not be (improper) Riemann integrable (see Volterra function)
or Lebesgue integrable (if f 1 is unbounded but is improper Riemann integrable).

(b) If f 1 is (improper) Riemann integrable, then the FTOC holds (by the standard proof). If f 1 is Lebesgue
integrable, then the FTOC holds. This is not true for a.e. differentiable functions f (see Cantor
function), but is true for functions differentiable except at most on a countable set.
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(c) If f is Lebesgue integrable, then by the Lebesgue differentiation theorem, Fpxq “
´ x

a f ptqdt is differ-
entiable a.e. with derivative equal to f a.e. In particular, it is equal to f at x0 iff x0 is a Lebesgue point
of f , e.g. if f is continuous at x0. F need not be differentiable except on a countable set (see dpx, Cq

where C is the Cantor set). Thus, if L is the set of Lebesgue points, then L is dense and Lc has measure
zero (but need not be countable).

Corollary 4.7.1 (Rademacher’s Theorem). Locally Lipschitz functions are differentiable a.e. and satisfy
the FTOC.

Remark 4.8. This theorem sounds a lot less nice than what could be easily remembered. In particular, it
requires some sort of integrability for f 1. One approach to this is to generalize the both the improper Riemann
integral and the Lebesgue integral to the Henstock-Kurzweil (HK) integral. If considering HK integrals,
the FTOC can then be simply phrased as: If F is differentiable with derivative f , then

HK
ˆ b

a
f pxqdx “ Fpbq ´ Fpaq.

4.1.3 Holder Continuity

Definition 4.4. For an open bounded subset X Ă Rn and k P N, α ą 0, define the Holder class Ck,αpXq

to be the space of Ck functions with finite Holder norm

} f }Ck,α “ } f }Ck ` |Bβ f |C0,α :“ } f }Ck ` sup
x “yPX,|β|“k

|Bβ f pxq ´ Bβ f pyq|

}x ´ y}α
ă 8,

for the Holder seminorm | ¨ |C0,α . If f P C0,α, we say f is α-Holder continuous.

Proposition 4.7. Ck,α only contains constants for α ą 1, and Ck,1 is the vector space of k-times continu-
ously differentiable functions with the k-th order derivative Lipschitz continuous. In particular, for α ă 1
and X bounded Ck,αpXq is a Banach space.

Proof. The characterization of C0,1 follows immediately from the definition. Notice that Ck,α Ă

Ck,α1

whenever α ą α1. WLOG suppose k “ 0. Then,

| f pxq ´ f pyq|

}x ´ y}
ď } f }C0,α }x ´ y}α´1 Ñ 0

as }x ´ y} Ñ 0, so ∇ f is zero, i.e. f is constant. Clearly, the Ck,α norm is a norm. Finally, since
CkpXq is Banach, if fn is Cauchy in Ck,α, it converges to an element f P Ck. Moreover, if | f |C0,α ą

limn | fn|C0,α , there exists a sequence of pairs pxk, ykq such that

| f pxkq ´ f pykq|

}xk ´ yk}α
ď

2ϵ

}xk ´ yk}α
` | fn|C0,α ď lim sup

n
| fn|C0,α “ lim

n
| fn|C0,α ,

which is a contradiction if that is the sequence of pairs that maximizes | f |C0,α . Thus, f P Ck,α

and | f |C0,α ď limn | fn|C0,α . Then, since | fn ´ fm|C0,α ă ϵ, taking the limit in Ck yields | f ´ fm|C0,α ď

limn | fn ´ fm|C0,α ď ϵ. Thus, we conclude that fn Ñ f in Ck,α, so Ck,α is a Banach space.

Example 4.2. For 0 ă β ď 1, f pxq “ xβ on r0, 1s is α-Holder continuous for α ď β, but not for α ą β,
since

sup
xąy

xβ ´ yβ

px ´ yqβ
ă 8
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for α ď β - this can be seen since for fixed y, as x Ñ y, the function approaches 0, and xβ grows faster than
px ´ yqβ since px ´ yqβ´1 ě xβ´1. For y “ 0 and α ą β, as x Ñ 0, one has |xβ|C0,α Ñ 8.

Example 4.3. Absolute continuity does not imply Holder continuity, as 1
ln x (taken to be 0 at 0) is absolutely

continuous on r0, 1
2 s, but

1
ln x
xα Ñ 8 for any α ą 0 as x Ñ 0.

Lemma 4.8. The inclusion Ck,α ãÑ Ck,β for α ą β is compact.

Proof. The inclusion is clearly continuous, as

| f |C0,β ď }x ´ y}α´β| f |C0,α ď diampXqα´β| f |C0,α .

Moreover, the sequence is uniformly equicontinuous, so by Arzela-Ascoli, there is a uniformly
convergent subsequence, and

| fn ´ fm|C0,β ď | fn ´ fm|
β
α

C0,α } fn ´ fm}
1´

β
α

8 Ñ 0

as n, m Ñ 8 since fn is bounded in C0,α.

Example 4.4. Holder continuous functions need not be of bounded variation. As an example, consider the
Weierstrass function

f pxq “

8
ÿ

n“1

an cospbnπxq

for b odd, 0 ă a ă 1, and ab ą 1 ` 3
2 π. By the Weierstrass M-Test, this function is continuous. Let αn P Z

be the integer closest to bnx, xn :“ bnx ´ αn and construct sequences x˘
n :“ pαn ˘ 1qb´n, which one can

check both converge to x. Then,
f pxmq ´ f pxq

xm ´ x
is an infinite sum, where the first m terms are bounded in magnitude by at most

π
m´1
ÿ

n“1

pabqn ă π
pabqm

ab ´ 1

using the fact that cos x has Lipschitz constant 1, and for the tail,

cospbn`mπx`
mq “ ´p´1qαm , cospbn`mπx0q “ p´1qαm cospbnπxm`1q,

so that
8
ÿ

n“m
anpcospbnπx`

n q ´ cospbnπx0q ě pabqm 1 ` cospπxm`1q

1 ` xm`1
ě

2
3

,

where we used the facts that the sum only has positive terms and took the n “ m term and xm`1 P p´ 1
2 , 1

2 s.
These two inequalities show that

f px`
mq ´ f pxq

x`
m ´ x

“ p´1qαm pabqmη1

ˆ

2
3

` ϵ1
π

ab ´ 1

˙

for |ϵ1| ď 1 and η1 ą 1. An analogous argument for x´
m shows that

f px´
mq ´ f pxq

x´
m ´ x

“ ´p´1qαm pabqmη2

ˆ

2
3

` ϵ2
π

ab ´ 1

˙

.
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Given the condition on ab, we have that both sides have different signs and in fact diverge to ˘8, so f is
not differentiable at x. Moreover, writing

fαpxq “

8
ÿ

n“1

b´nα cospbnπxq,

one can show that f is α-Holder continuous for α ď ´ ln a
ln b . In particular, W1 is an example of an α-Holder

continuous function for all α ą 1 that is not Lipschitz.

Example 4.5. Holder continuity is a very "weak" definition of continuity. For example, the Cantor func-
tion is α-Holder continuous with α “

log 2
log 3 . As another example, take the space-filling curves. Let C be

the Cantor set, considered as a topological space, and h : C Ñ r0, 1s be surjective (for example, take the
restriction of the Cantor function C : C Ñ r0, 1s). Then, since C is homeomorphic to C ˆ C, one gets a
surjective map

C „
Ñ C ˆ C ↠ r0, 1s ˆ r0, 1s,

which may be extended to a continuous function on r0, 1s. Note that such a map must necessarily not be
injective, as it would otherwise be a homeomorphism of a unit interval and the unit square. It thus follows
that space-filling curves derived from the Cantor function are Holder continuous.

4.2 Examples

We now have many different proposed types of continuity, related by the following inclusions on
R:

C1 Ă Lipschitz continuous Ă AC Ă continuous and BV Ă differentiable a.e.

We provide a list of relevant examples:

(a) |x| is Lipschitz but not C1 on [-1,1].

(b)
?

x is AC on [0,1] since FTOC holds, but not Lipschitz, since its derivative is not bounded.

(c) Cantor’s function is continuous and BV (since it is monotonic) but not AC (since its deriva-
tive is zero a.e.).

(d) f pxq “

#

sinp 1
x q x “ 0

0 x “ 0
is differentiable a.e. on r0, 1s but not BV. Similarly, x sinp 1

x q is not BV

(as its envelope is given by x, and the harmonic series diverges).

(e) The Weierstrass function W1 is Holder continuous for all α ą 1 but differentiable nowhere.

(f) 1
ln x is AC but not Holder continuous for any α.

Additionally, we may relate the notions of classical, weak, and distributional derivatives as fol-
lows:

(a) A function on R is weakly differentiable with derivative in L1 iff it is absolutely continuous.
Thus, AC is the set of functions whose derivatives are also functions. In Rn for n ě 2,
u is weakly differentiable iff u is absolutely continuous on lines (ACL). Moreover, if u P

BVpRnq, u1 P L1.

(b) If u P BVpRnq, then the distributional derivative u1 is a Radon measure. If n “ 1, then u1

is classically defined a.e. and u1 P L1, but the derivative is strictly weaker than the weak
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derivative (since it is a measure, not a function). For example, the derivative of the Cantor
function is 0 a.e., while the weak derivative does not exist. However, by Radon-Nikodym,
one can write u “ uac ` uj ` us, where uac P AC, uj is a jump function (that is, a distribution
corresponding to a discrete measure), and us is a singular continuous function with u1

s “ 0
a.e. For n ě 2, u need not even be differentiable a.e., even if u is continuous.

4.3 Exercises

Fall 2013 Problem 12 Suppose f : r0, 1s Ñ R is continuous and absolutely continuous on p0, 1s.
Show that f is not necessarily absolutely continuous on r0, 1s, but that if it is of bounded variation
on r0, 1s, then it is absolutely continuous on r0, 1s.

Proof. f pxq “ x sin 1
x is continuous but not BV on r0, 1s, and absolutely continuous on p0, 1s since

it satisfies the fundamental theorem of calculus. Now, if f is assumed to be of bounded variation,
then we can consider the total variation function TFp1´tq, which is by assumption a monotonic
bounded increasing function on r0, 1s. Thus, for any ϵ ą 0 there exists a δ ą 0 s.t. TFp1´tqp1q ´

TFp1´tqp1 ´ δq ă ϵ, i.e. the total variation of f on r0, δs is less than ϵ. Then, considering F on
r0, δs and rδ, 1s, we use absolute continuity on rδ, 1s to conclude that F is absolutely continuous on
r0, 1s.

Fall 2016 Problem 1 Show that if f P L1 and

lim
hÑ0

ˆ
| f px ` hq ´ f pxq|

h
dx “ 0,

then f “ 0 a.e.

Proof. The clever trick is to use the Lebesgue Differentiation Theorem. Namely,

ˆ d

c

f px ` hq ´ f pxq

h
dx “

´ c`h
c f pxqdx ´

´ d`h
d f pxqdx

h
Ñ 0

as h Ñ 0 implies that f pcq “ f pdq if c, d are Lebesgue points of f . But a.e. point is a Lebesgue point,
so f is constant a.e., and since it is in L1, f therefore is zero a.e.

4.4 Hilbert Space Theory

The following are main theorems and lemmas to be used from the theory of Hilbert spaces:

(a) Every Hilbert space admits an orthonormal basis en.

(b) Parseval’s Identity: The orthonormal basis satisfies
›

›

›

›

›

8
ÿ

n“1

anen

›

›

›

›

›

“ }panq}l2 .

(c) For every closed convex subset W and any vector v R W, there exists a unique w P W such
that }v ´ w} “ infw1PW }v ´ w1}.
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(d) For every closed subspace W of V, there exists an orthogonal decomposition of V as V “

W ‘ WK.

(e) Riesz Representation Theorem: For any ϕ P V˚, there exists a unique v P V such that
ϕpwq “ xw, vy.

Proof. We prove the Riesz representation theorem. Let ϕ P V˚ and consider the decomposition
V “ ker ϕ ‘ ker ϕK. Pick x0 P ker ϕK and notice that

ϕ

ˆ

x ´
ϕpxq

ϕpx0q
x0

˙

“ 0.

This implies that
B

x ´
ϕpxq

ϕpx0q
x0, x0

F

“ 0 ùñ ϕpxq “ xx,
ϕpx0q

}x0}2 x0y.

Then, uniqueness is easily checked.

4.4.1 Exercises

Fall 2009 Problem 1 Find a closed subset in L2pr0, 1sq with no element of smallest norm.

Proof. Let X “ t fnu, where fn “
?

n ` 1χ
r0, 1

n s
. Then, } fn}2

2 “ n`1
n , and any subset of fn converges to

0 a.e. Then, if some subsequence satisfied fn Ñ f in L2 with } f }2 “ 0, it would have a subsequence
that converges a.e., so the subsequence would have to converge to 0. But that is a contradiction,
since }0}2 “ 1. Thus, X is a closed nonempty subset of L2 with no element of smallest norm.

Fall 2009 Problem 7 Define a unitary operator on a complex Hilbert space, and show that if S is
unitary, then S ´ λI is invertible for |λ| ă 1. Finally, show that if one defines

hpλq “ xpS ` λIqpS ´ λIq´1v, vy,

then Re h is a positive harmonic function.

Proof. A unitary operator S is one that satisfies xSv, Swy “ xv, wy for all v, w P V, or equivalently,
one such that SS˚ “ S˚S “ I. In particular, }SS˚} ď }S}2 “ 1, so }S} ď 1. Clearly, if λ “ 0, S ´ λI
is invertible with inverse S˚. If λ “ 0, S is unitary and 1

|λ|
ą }S} “ }S˚}, so I claim that

pS ´ λIq´1 “
1

S ´ λI
“ S´1 1

I ´ λS´1 “ S˚

8
ÿ

n“0

pλS˚qn

is the inverse of S ´ λI. Indeed it is a well-defined operator, as the series converges absolutely,
since }pλS˚qn} ď |λ|n}S˚}n ď p|λ|}S}qn, which is a geometric series that converges, and one can
formally multiply the series with S ´ λI to check that it yields the identity.

Finally, define h as above.
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Fall 2010 Problem 6 Let V be the Hilbert space of holomorphic functions f : D Ñ C such that
f pzq “

ř

n anzn and } f } “ }xny pf }2 ă 8, where xny “
?

1 ` n2. Show that L : f Ñ f p1q is a
bounded linear functional on V, find the element g that represents L, and f Ñ Re Lp f q achieves
a unique maximum on the set X “ t f : } f } ď 1, f p0q “ 0u and find this maximum.

Proof. a) Clearly, L is a linear functional. Then, by Cauchy-Schwarz,

| f p1q| “
ÿ

n
xny´1pxny2

pf pnqq ď }xny´1}2} f } À } f }.

b) We want to find g P V such that

f p1q “ x f , gy “
ÿ

n
xny2

pf pg.

In particular, note that
ÿ

n
an “ f p1q “

ÿ

n
anxny2

pg,

so setting pgpnq “ xny´2, we get that g “
ř

n pgpnqzn P V represents L. Note that g P V by direct
computation.

c) To show that Rep f p1qq achieves its maximal value on X, we use the representation of the linear
functional. If } f } ď 1 and f p0q “ pf p0q “ 0, then Re f p1q ď | f p1q| ď }xny

´1
ně1}2. Let Let f “ g ´ 1.

Then, | f p1q| “ } f }, f p0q “ 0, } f } “
a

}g}2 ´ 1 ď 1. One may use Cauchy-Schwarz to show
uniqueness, thus completing the proof.

Let E Ă L2pr0, 1sq be a closed subset such that E Ă Cpr0, 1sq. Show that E is finite dimensional.

Proof. The proof roughly follows in 4 steps. First, notice that by Holder, } f }2 ď } f }8 for all f P E.
Next, consider the inclusion pE, } ¨ }2q Ă Cpr0, 1sq. If fn Ñ f in L2 and fn Ñ g in L8, then f “ g
a.e., so by the closed graph theorem, the inclusion is continuous, i.e. } f }8 ď C} f }2. Now, for any
f P E, evaluation at x P r0, 1s is a continuous linear functional, so by Riesz representation on the
Hilbert space E, for some gx P E, f pxq “ x f , gxy and so gxpxq “ }gx}2

2 ď C}gx}2, i.e. }gx}2 ď C.
Then, for any orthonormal basis fi of E, by Bessel’s,

ÿ

i

| fipxq|2 “ }gx}2
2 ď C2,

so integrating on both sides yields |I| ď C2, i.e. E is finite-dimensional.

5 Functional Analysis

Here are some important results and problems from functional analysis.

Theorem 5.1 (Hahn-Banach). Let V be a normed vector space and W Ă V be a subspace. If ϕ : W Ñ C

is a linear map (not necessarily bounded) that is bounded by a seminorm p : V Ñ R on W, then ϕ extends
to a map Φ : V Ñ C bounded by p on V.
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Corollary 5.1.1. (a) If W Ă V is a closed subspace and x P VzW, there exists ϕ : V Ñ C that vanishes
on W, }ϕ} “ 1, and ϕpxq “ 1.

(b) Every continuous functional W Ă V extends to a continuous functional of the same norm on V.

(c) Geometric Hahn-Banach: If A, B are two closed convex disjoint nonempty subsets of V, then there
exists a linear functional ϕ : V Ñ R and some c P R such that supA ϕpxq ă c ă infB ϕpxq, i.e.
A, B are separated by the hyperplane ϕ´1pcq.

(d) The map i : X Ñ X˚˚ is injective and isometric.

Theorem 5.2 (Open Mapping Theorem). Let T : X Ñ Y be a continuous linear map between Banach
spaces. Then, either T is surjective and open, or the image of T is a set of the first category in V.

Theorem 5.3 (Closed Graph Theorem). If T : X Ñ Y is a map between Banach spaces then if tpx, Txqu Ă

X ˆ Y is closed, then T is continuous.

Theorem 5.4 (Uniform Boundedness Principle). Consider a family of bounded operators Tα : X Ñ Y
between Banach spaces such that for each x, }Tαx} ď Cx for all α for some constant depending on x. Then,
}Tα} ď C for some C for all α.

Proof. Consider the sets Xn “ tx : supα }Tαx} ď nu. By the Baire category theorem, one of these
sets Xn contains an open ball Bpx0, ϵq. Then,

sup
}u}ď1

}Tαu} “ sup
}u}ď1

›

›

›

›

Tαpx0 ` ϵuq ´ Tαx0

ϵ

›

›

›

›

ď
2n
ϵ

.

Theorem 5.5 (Banach-Alaoglu). If B is a Banach space, then the unit ball in B˚ is weak-* compact.

Proof. Define Bx :“ tz P C : |z| ď }x}u, and consider A :“
ś

xPBp0,1q Bx, which is compact as
a product of compact spaces by Tychonov’s theorem. Then, if B˚ is the unit ball in the weak´˚

topology, the map Φ : B˚ Ñ A given by Φxpϕq “ ϕpxq is a homeomorphism onto a subset of A. By
Hahn-Banach, the map is injective, and it it clearly continuous with respect to the weak´˚ topol-
ogy. Finally, it easily checked that the image is closed in A and fn Ñ f weakly iff Φp fnq Ñ Φp f q,
so the map is a homeomorphism. Thus, B˚ is homeomorphic to a compact set and is therefore
compact.

Often times, one wants to show certain types of compactness/weak compactness. Here we pro-
vide an overview of the conditions necessary to obtain such result, namely, considering the con-
ditions of separability and reflexivity.

Definition 5.1. B is reflexive if the isometric embedding into the second dual i : B Ñ B˚˚ is a Banach
space isomorphism, i.e. the weak and weak-˚ topologies on B˚ coincide. B is separable if it has a countable
dense subset.

Remark 5.1. The following is an extremely important remark: since the weak/weak˚ topology is not
necessarily metrizable, weak compactness and weak sequential compactness are NOT EQUIVA-
LENT.
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Remark 5.2. Moreover, it is extremely important to distinguish the metrizability of the entire space
versus a compact set. For instance, we will show that the weak/weak˚ topology is never metrizable on a
space X, but the weak-˚ topology on the unit ball is metrizable if X is separable. In particular, this implies
that in general, if S is weakly sequentially closed, S is not necessarily weakly closed. However, this
is true, for example, on weakly bounded sets, since in that case the topology is metrizable, or for separable
reflexive spaces.

Remark 5.3. We will use the letter X to denote a general vector space and B to denote a Banach space.

Lemma 5.6. (a) Y is Banach iff LpX, Yq is Banach.

(b) If X˚ is separable, then X is separable.

(c) B is reflexive iff B˚ is reflexive.

(d) B is reflexive and separable iff B˚ is reflexive and separable.

(e) A Hilbert space is reflexive.

(f) X is separable iff the weak-˚ topology on the unit ball of X˚ is metrizable.

(g) X˚ is separable iff the weak topology on the unit ball of X is metrizable.

Proof. We prove (b) and (e). For (b), pick a dense subset ϕn of the unit sphere in B˚, and pick a
sequence xn on the unit sphere of B such that ϕpxnq ě 1

2 . Suppose that the Q-span of xn is not
dense in B. Then, by Hahn-Banach, there exists a nonzero linear functional ψ P B˚ with }ψ} “ 1
that vanishes on the Q-span of xn. But then, for any ϕn,

|ψpxnq ´ ϕnpxnq| ě
1
2

,

contradicting the density of ϕn.
For (f), if xn is a dense countable subset of the unit sphere, it suffices to define the metric

ρpϕ, ψq “

8
ÿ

n“0

2´n pϕ ´ ψqpxnq

1 ` pϕ ´ ψqpxnq
.

It is then easy to see that ϕn
˚

á ϕ iff ϕnpxmq Ñ ϕpxmq for all m, i.e. this metric defines the weak-˚

topology. (g) follows similarly.

Lemma 5.7. The weak/weak´˚ topology is never metrizable.

Proof. Suppose d is a metric for the topology, consider the Un “ tx : dpx, 0q ă 1
n u, these are

weakly open and therefore unbounded. But if xn P Un, }xn} ě n, xn á 0, so xn is bounded, a
contradiction.

Lemma 5.8. In an infinite-dimensional normed vector space, the weak closure of the unit sphere is the unit
ball.
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Proof. One inclusion is clear - since a convex set is closed if and only if it is weakly closed, B is
weakly closed, and so Sw Ď B. Conversely, recall that the weak topology is the coarsest topology
on H, such that the linear functional evaluation maps x Ñ ϕpxq “ xx, ϕy are continuous. Thus,
the basic open neighborhoods in the weak topology of some x P H are the sets U “ ty P H :
xy ´ x, ϕiy ă ϵ, i “ 1, ..., nu. For x P B, note that y ´ x P

Şn
i“1 ker ϕi, and since kernels of linear

functionals have finite codimension and X is infinite-dimensional, the intersection of the kernels
is infinite-dimensional and therefore contains a line L “ ttv : t P R, v P Xu through the origin. In
particular, since }x} ď 1, if y ´ x P L, so y “ x ` L intersects S (since for t “ 0 one has }y} ď 1
and for t large }y} Ñ 8.) Thus, any basic open neighborhood of x P B intersects S, i.e. S is weakly
dense in B. Along with the other inclusion, it follows that Sw “ B.

Lemma 5.9. If X˚ is separable, then there exists a sequence xn P X, }xn} “ 1, such that xn á x for any
}x} ď 1.

Proof. Since X˚ is separable, the unit ball in X is weakly metrizable, so sequential weak closedness
agrees with weak closedness.

Remark 5.4. It follows that the unit sphere is never weakly closed. If X˚ is separable, the above lemma
shows that it is also not weakly sequentially closed. However, if X “ l1, X˚ “ l8, which is not separable,
and since l1 has the Schur property, weak sequential convergence and norm convergence are equivalent, so
the unit sphere is weakly sequentially closed but not weakly closed.

Lemma 5.10. Given linearly independent functionals ϕi P X˚, i “ 1, ..., n of norm 1, and |ci| ď 1, i “

1, ..., n, there exists x P X with }x} ď 1 s.t. ϕipxq “ ci. In finite dimensions this becomes a simple matrix
problem.

Proof. Note that ϕipxq “ ci for ci “ 0 is equivalent to pϕi ´
ci
cj

ϕjqpxq “ 0, i “ j assuming that
ϕ1pxq “ c1. Clearly, such an x exists, as it is in the kernel of finitely many linear functionals in an
infinite dimensional space and can be scaled appropriately to satisfy ϕ1pxq “ c1.

Theorem 5.11 (Goldstine’s Theorem). The image of the unit ball under the embedding i : X Ñ X˚˚ is
weak-˚ dense in the unit ball of X˚˚.

Proof. Let y P BX˚˚ , so that |ypϕq| ď }ϕ}. Notice that tx P X˚˚ : |py ´ xqpϕiq| ă ϵ, i “ 1, ..., nu is a
basic weak-* neighborhood of y in BX˚˚ . Without loss of generality, one may take tϕiu to be linearly
independent. But by the above lemma, one can find x P BX such that ϕipxq “ ypϕiq, i “ 1, ..., n so
ipBXq intersects every open weak-* neighborhood of y.

Theorem 5.12. The following are equivalent:

(a) B is reflexive.

(b) Kakutani’s Theorem: The unit ball in B is weakly compact.

(c) Eberlein-Smulian Theorem: The unit ball in B is weakly sequentially compact.

Proof. If B is reflexive, then by Banach-Alaouglu, the unit ball in B is weak-˚ compact and therefore
weakly compact. Conversely, the image of the unit ball under the isometric embedding is weak-*
closed and and dense in the unit ball of B˚˚, so it comprises the entire unit ball, i.e. i : B Ñ B˚˚ is
bijective and thus B is reflexive.
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Corollary 5.12.1. (a) If B is separable or reflexive, then the unit ball in B˚ is weak´˚ sequentially
compact.

(b) If B is both reflexive and separable, all unit balls are compact/sequentially compact in all weak topolo-
gies.

Corollary 5.12.2. A reflexive Banach space is weakly sequentially complete, i.e. every weak-˚ Cauchy
sequence converges.

5.1 Unbounded Operators and Adjoints

Definition 5.2. An unbounded operator T : DpTq Ă X Ñ Y is a linear map defined on a subspace DpTq,
called the domain of T. If DpTq is dense in X, T is said to be densely defined. T is said to be closed if its
graph tpx, Txqu Ă X ˆ Y is closed.

Proposition 5.1. T : DpTq Ă X Ñ Y is bounded on DpTq iff DpTq is closed and T is closed.

Proof. A bounded operator is clearly closed and DpTq is closed. The converse follows from the
closed graph theorem.

Corollary 5.12.3. Thus, closed unbounded operators are never defined on X. One typically works with
densely defined closed unbounded operators.

We now establish a correspondence between graphs and unbounded operators.

Proposition 5.2. There is a one-to-one correspondence

unbounded (closed) operators T on DpTq ÐÑ (closed) subspace C of X ˆ Y s.t. pp0, yq P C ùñ y “ 0q, πpCq “ DpTq.

Proof. One direction is obvious. The other follows from defining Tx “ y for px, yq P C and check-
ing that this is indeed linear.

Definition 5.3. A closable operator T is an operator such that the closure of its graph satisfies p0, yq P

C ùñ y “ 0. The closure T is the operator corresponding to the closure of the graph of T.

Remark 5.5. Note that the closure T of a closable operator is an extension of the corresponding graph. In
general, there exists a (highly nonunique) extension of any operator. Additionally, the condition of being
closed is weak in the following sense: if T is defined on a dense domain B and A is a dense subdomain, then
the closure of T|A and T|B need not be equal (take, for instance, T to be identically 0 on A and nonzero
somewhere on B). However, it turns out that this distinction disappears for self-adjoint operators.

Example 5.1. The derivative operator d
dx : C1pr0, 1sq Ă Cpr0, 1sq Ñ Cpr0, 1sq is a closed, densely defined,

unbounded operator. To see this, let fn P C1 be s.t.

p fn, f 1
nq Ñ p f , gq P Cpr0, 1sq ˆ Cpr0, 1sq.

Then, by a classic result on convergence of derivatives, it follows that f P C1 and f 1 “ g. This implies that
C1pr0, 1sq is not closed in Cpr0, 1sq. However, if we replace the domain by C8pr0, 1sq, the operator is not
closed, since there is no guarantee that f P C8.

Example 5.2. The unbounded densely defined operator T : Cpr0, 1sq Ñ L2pr0, 1sq given by T f “ f p0q is
not closable.
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Definition 5.4. For a bounded operator T : X Ñ Y between Banach spaces, define the adjoint T˚ : Y˚ Ñ

X˚ by T˚pϕqpxq “ ϕpTxq.

For an unbounded densely-defined operator T : DpTq Ă X Ñ Y between Banach spaces, define

DpT˚q “ ty˚ P Y˚ : DC ě 0, |y˚pTxq| ď C}x}X, x P DpTqu.

Then, one can uniquely define T˚ : DpT˚q Ă Y˚ Ñ X˚ by T˚pϕqpxq “ pϕpTxq, which is the Hahn-Banach
extension of T˚pϕq to all of X. T˚ is called the formal adjoint of T.

Definition 5.5. An operator T is called symmetric (or formally self-adjoint) if T˚ is an extension of T,
and self-adjoint if T˚ “ T. If T is symmetric and its closure is self-adjoint, then T is called essentially
self-adjoint.

Proposition 5.3. (a) T˚ is always closed.

(b) T closable ðñ T˚ densely-defined, in which case T “ T˚˚.

(c) (Hellinger-Toeplitz): A symmetric operator T with DpTq “ H is bounded.

Proof. If T˚ is densely defined, one can easily check that T˚˚ is the closure of T. Conversely, if T is
closable. The other direction is slightly more complicated.

The first and last statement are a direct consequence of the closed graph theorem and the fact that
if pxn, Txnq Ñ px, yq,

xz, Txny “ xTz, xny Ñ xz, yy “ xTz, xy ùñ xz, Tx ´ yy “ 0 @z.

Corollary 5.12.4. Since we can always pass from a closable operator to a closed operator, it follows that
T is closed and densely-defined iff T˚ is. Moreover, this implies that symmetric operators are closable and
densely-defined.

We have seen that closed extensions of operators need not be unique. What about symmetric
extensions of symmetric operators?

Example 5.3. Take T “ ´B2
x on L2pra, bsq with DT “ t f P C8 : f pnqpaq “ f pnqpbq “ 0, n ě 0u. It is

easy to see that T is positive and symmetric. In particular, we can define the following extensions on larger
domains:

Tα,β “ t f P C8 : f paq “ α f pbq, f 1paq “ β f 1pbqu.

It turns out the extension is symmetric iff xα, βy “ 1, and in fact, any two such extensions do not have a
common extension. This example shows the importance of boundary conditions in these sorts of problems.
However, there is a unique self-adjoint extension (which is given by the closure T “ T˚˚ of T), which
occurs iff T is essentially self-adjoint.

Proposition 5.4. If T : X Ñ Y is a bounded linear operator between Hilbert spaces,

ker TK “ ran T˚, ran TK “ ker T˚.

Proof.
0 “ xTx, yy “ xx, T˚yy.
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Corollary 5.12.5. T is injective iff T˚ has dense image.

Lemma 5.13. A bounded linear map T : X Ñ Y between Banach spaces is injective and has closed range
iff T is bounded below.

Proof. If T is bounded below, then }Tx} ě C}x}, so Tx “ 0 implies x “ 0, i.e. T is injective.
Similarly, if Txn Ñ y, then xn is Cauchy, so xn Ñ x, and y “ Tx. Conversely, T : X Ñ ran T is an
isomorphism, so by the open mapping theorem its inverse is bounded.

Lemma 5.14. If T is injective and has closed range, then T˚ is surjective.

Proof. T : X „
Ñ ran T ãÑ Y is an isomorphism, which induces an isomorphism T˚ : Y˚ ↠

pran Tq˚ „
Ñ X˚.

Theorem 5.15 (Closed Range Theorem). TFAE for a closed densely-defined operator T : X Ñ Y:

(a) ran T is closed.

(b) ran T˚ is closed.

(c) ran T “ pker T˚qK.

(d) ran T˚ “ ker TK.

Proof. We remark that
T : A ãÑ B Ñ C ùñ T˚ : C˚ Ñ B˚ ↠ A˚,

and
T : B ↠ B{A Ñ C ùñ T˚ : C˚ Ñ pB{Aq˚ ãÑ B˚.

It suffices to prove that (a) implies (d). Since

T : X ↠ X{ ker T „
Ñ ran T ãÑ Y

is an isomorphism,
T˚ : Y˚ ↠ pran Tq˚ „

Ñ pX{ ker Tq˚ – ker TK ãÑ X˚

is an isomorphism, so ran T˚ “ ker TK.

Remark 5.6. The rough conclusion of this section is that T surjective implies T˚ injective, and T bounded
below implies T˚ surjective.

Definition 5.6. A subspace W Ă V of a Banach space is said to be complemented if V “ W ‘ Z as
Banach spaces, and the projections are continuous.

Remark 5.7. While it is true that V “ W ‘ Z as vector spaces (because of algebra), the additional re-
quirement that the projections are continuous makes the statement deeper for Banach spaces. Note that in
particular this implies that if W Ă V is complemented, then W Ă V is closed.
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5.2 Spectral Theory

Definition 5.7. A Frechet-differentiable function F : U Ñ Y between complex Banach spaces is said to be
holomorphic in U.

Definition 5.8. For an unbounded linear operator T : DpTq Ă X Ñ Y, the spectrum σpTq Ă C of T
is the set of λ for which pT ´ λIq´1 : Y Ñ DpTq exists and is bounded. ρpTq “ CzσpTq is called the
resolvent set of T, and pT ´ λIq´1 is known as the resolvent operator of T.

Remark 5.8. More generally, one may define the spectrum of an element a of a unital algebra A over a field
K as the set of λ P K s.t. a ´ λ is not invertible.

Remark 5.9. By the closed graph theorem λ P σpTq iff T ´ λI is not bijective.

Proposition 5.5. (a) If T is not closed, σpTq “ C. Otherwise, σpTq Ă C is closed (possibly empty), and
if T is bounded, σpTq Ă Bp0, }T}q is nonempty and compact.

(b) λ Ñ pT ´ λIq´1 is holomorphic on ρpTq.

(c) If T is invertible, λ P σpTq ðñ λ´1 P σpT´1q.

Proof. Note that pT ´ λIq´1 “ ´λ´1pI ´ T
λ q´1, which has a geometric power series expansion and

is therefore holomorphic whenever λ ą }T}, so σpTq is bounded. Moreover, if λ0 P ρpTq,

pT ´ λq´1 “ ppT ´ λ0q ´ pλ ´ λ0qq´1 “ pT ´ λ0q´1pI ´ pλ ´ λ0qpT ´ λ0q´1q´1,

which has a geometric power series expansion and is therefore holomorphic whenever |λ ´ λ0| ă
1

}pT´λ0q´1}
. Thus, σpTq is closed and bounded, i.e. compact. Finally, if σpTq is empty, then λ Ñ

pT ´ λIq´1 defines a bounded entire function (since }pT ´ λq´1} ď 1
}T´λ}

ď 1
|}T}´|λ||

for |λ| large,
which by Liouville’s theorem implies that it must be constant, a contradiction.

Remark 5.10. The version of Liouville’s theorem used here is that a bounded entire function with values
in a complex normed vector space is constant. This can be proven using the classical Liouville theorem and
composing with bounded linear functionals, using the fact that the latter separate points.

Definition 5.9. By the open mapping theorem, the operator T ´ λI may fail to be invertible for three
reasons:

(a) T ´ λI is not injective. Then, λ is an eigenvalue of T, and thus belongs to the point spectrum σppTq.

(b) T ´ λI is injective and its range is dense in Y. Then, pT ´ λq´1 is an unbounded operator and λ
belongs to the continuous spectrum σcpTq.

(c) If T ´ λI is injective but its range is not dense, λ is said to belong to the residual spectrum σrespTq.

(d) The essential spectrum σesspTq is the set of λ for which T ´ λI is not Fredholm.

Proposition 5.6. λ P σppTq ðñ λ P σrespT˚q.

Proof.
ker T ´ λI “ ranpT˚ ´ λIqK “ ∅.
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Example 5.4. (a) Consider the left-shift operator T : l2 Ñ l2, i.e.

Tppx1, x2, ..., qq “ px2, x3, ..., q.

Note that }T} “ 1. The point spectrum must satisfy

Tpx1, ...q “ pλx1, ..., q,

so xn “ λn´1x1 for n ě 2, which has a solution for any nonzero |λ| ă 1. Thus, σppTq “ D. Since
λ P σppTq implies λ P σrespT˚q, it follows that σcpTq “ BD and σrespTq “ ∅.

(b) Similarly, considering the right-shift operator

Tppx1, ...qq “ p0, x1, ...q,

we get that σppTq “ ∅, σrespTq “ D, and σcpTq “ BD.

(c) Consider ´∆ : H2pRnq Ă L2pRnq Ñ L2pRnq. Then, solving

p´∆ ´ λq f “ g

equates to solving
p|ξ|2 ´ λq pf “ pg,

so since f P H2pRnq,

λ P ρp´∆q ðñ
p1 ` |ξ|2qpg

|ξ|2 ´ λ
P L2pRnq,

which is true whenever the multiplier is bounded, i.e. λ ă 0. Thus, ρp´∆q “ p´8, 0q ùñ

σp´∆q “ r0, 8q.

5.3 Compact and Fredholm Operators

Definition 5.10. TFAE:

(a) A bounded operator T : X Ñ Y between Banach spaces sends bounded sets to relatively compact sets.

(b) If xn is bounded sequence, Txn has a convergent subsequence.

In either case, T : X Ñ Y is called a compact operator.

Proof. The equivalence of definitions (a) and (b) is immediate.

Proposition 5.7. A compact operator T : X Ñ Y sends weakly convergent sequences to strongly conver-
gent sequences. The converse holds true if X is reflexive.

Proof. If xn á x is a weakly convergent sequence, then Txn á Tx and there is some strongly
convergent subsequence Txnk Ñ y “ Tx. Particularly, since every subsequence has a further
subsequence converging to y, Txn Ñ Tx “ y. Conversely, if X is reflexive, let xn be a bounded
sequence. Then, by Kakutani’s theorem, xn has a weakly convergent subsequence xnk á x. Ap-
plying the same subsequence of a subsequence argument completes the proof.

Proposition 5.8. (a) A finite rank operator is compact.
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(b) T : X Ñ Y is compact iff T˚ : Y˚ Ñ X˚ is compact.

(c) Compact operators form a two-sided ideal in the space of bounded operators.

(d) If ran T is closed in Y, T is a finite rank operator.

Proof. (a) and (c) are clear from the fact that one is dealing with bounded operators. If ran T is
closed in Y, T : X{ ker T „

Ñ ran T is an isomorphism of Banach spaces. Since T is compact, this
would contradict the fact that the unit ball in an infinite-dimensional space is not compact if ran T
is infinite-dimensional.

Suppose T is compact, and consider K “ TBp0, 1q Ă Y. Let ϕn Ă BY˚ be a bounded sequence. Then,
ϕn|K is bounded and equicontinuous, so by Arzela-Ascoli, there is some Cauchy subsequence ϕnk .
Then, T˚ϕnk is Cauchy, and so converges to some element ψ P X˚.

Definition 5.11. An operator T : X Ñ Y is Fredholm if dim ker T, codim ran T ă 8. dim ker T ´

codim ran T is called the index of T.

Lemma 5.16 (Riesz Lemma). If B is a vector space and V Ă B is a closed proper subspace, there exists a
unit vector v P B such that dpv, Vq ě α for α ă 1. If B is reflexive, then one may take α ď 1.

If K is a compact operator, then KpBp0, 1qq is compact, and we know that the unit ball is compact
only in finite-dimensional Banach spaces. One may thus ask to what extent are compact operators
different from operators that have a finite-dimensional image.

Lemma 5.17. For a Hilbert spaces H, the closure of the ideal FpHq of finite-rank operators (i.e. operators
with finite-dimensional image) with respect to the norm topology in BpHq is the ideal KpHq of compact
operators.

Proof. We will use the following characterization of compact subsets of a separable Hilbert space
H : a subset K Ă H is compact iff it is closed, bounded, and given an orthonormal basis teku,
there exists an N such that for any u P K, one has

ř

kąN |xu, eky|2 ă ϵ. With this characterization in
hand, one may simply define the sequence of finite rank operators Tnu “

ř

kďnxu, ekyek, and the
tail condition then guarantees precisely that Tn Ñ T in norm. Conversely, one may note that if
Tn Ñ T is a sequence of finite-rank operators, then TnBp0, 1q is totally bounded, and since Tn Ñ T
in norm, TBp0, 1q is totally bounded, therefore precompact.

Remark 5.11. By the same arguments, one may conclude that the ideal KpHq is closed in BpHq in the norm
topology.

Remark 5.12. This is not true in general for operators T : X Ñ Y between arbitrary Banach spaces X, Y.
Spaces that satisfy the conditions of the lemma are said to satisfy the approximation property (AP).

Lemma 5.18. If T : X Ñ X is compact, T ´ λI is Fredholm.

Proof. T is a multiple of the identity when restricted to kerpT ´ λIq, so it has to be finite-dimensional
for its image to be compact. We show that T ´ λI is bounded below if it is injective. If not, then for
some xn such that pT ´ λIqxn Ñ 0, xn Ñ 0, Txnk Ñ y “ 0, one has pT ´ λIqTxnk Ñ y “ 0, which a
contradiction. Thus, T ´ λI is injective and has closed range. If T ´ λI is not injective, apply the
argument on X{ ker T and pull back on the image.
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Theorem 5.19 (Spectral Theorem for Compact Operators). If T : X Ñ X between infinite-dimensional
Banach spaces is compact, 0 P σpTq ´ σppTq, each eigenvalue has finite multiplicity, σpTq is countable, with
the only possible limit point being the origin.

Proof. We show σpTq “ σppTq. If not, T ´ λI is injective but not surjective. Define Yn “ ranpT ´

λIqn, and notice that since T ´ λI is injective, all these have closed range by the lemma. By the
Riesz lemma, pick a sequence yn P Yn s.t. dpyn`1, Ynq ą 1, and form a convergent subsequence
Tyn, note that

Tyn ´ Tym “ pT ´ λIqyn ´ pT ´ λIqym ` λpyn ´ ymq P λyn ` Yn`1,

a contradiction since this implies }Tyn ´ Tym} Ñ 0. By the exact same logic, if there are in-
finitely many eigenvalues λn with eigenvectors yn outside a ball away from the origin, if Yn “

spanpy1, ..., ynq, then the same logic applies, so Tyn ´ Tym P λmym ` Ym´1, i.e. }Tyn ´ Tym} ą ϵ
2 , a

contradiction.

Theorem 5.20 (Spectral Theorem for Compact Self-Adjoint Operators). If H is a (separable) Hilbert
space and T : H Ñ H is a compact, self-adjoint operator, then there exists a (countable) orthonormal basis
of eigenvectors with real eigenvalues for H, i.e. T is unitarily diagonalizable.

Remark 5.13. The separability of H is needed for the basis of ker T to be countable.

Proposition 5.9. T : X Ñ Y is Fredholm iff there exists S : Y Ñ X such that I ´ TS, I ´ ST are compact.

Proof. If T is Fredholm, let S be the composition of the projection from Y onto ran T and the isomor-
phism from ker TK and ran T. Then, I ´ ST, I ´ TS are easily verified to be finite rank projections,
hence compact. The converse follows since T ´ λI for compact T is Fredholm.

Corollary 5.20.1. If T is Fredholm and K is compact, T ` K is Fredholm.

Proposition 5.10 (Weyl). Let T : X Ñ X be self-adjoint and K : X Ñ X be self-adjoint compact. Then,
σesspTq “ σesspT ` Kq.

Proof. This follows from the fact that being Fredholm is invariant under relatively compact per-
turbations.

Spring 2010 Problem 13 Suppose X, Y are Banach spaces, and X is separable and X˚ is sepa-
rable. Show that T : X Ñ Y is compact iff for every bounded sequence xn P X, there exists a
subsequence xnk and a ϕ P X such that xnk “ ϕ ` rnk , where Trnk “ 0.

Proof. For the backward direction, note that Txnk Ñ Tϕ, so T is compact. Conversely, note that
since X˚ is separable, the unit ball in X˚˚ is metrizable with respect to the weak-* topology,
i.e. weak-* compactness and weak-* sequential compactness are equivalent. Then, by Banach-
Alaouglu, X˚˚ is weak-* compact and therefore weak-* sequentially compact, i.e. for any bounded
sequence xn P X, there is a subsequence xxnk

˚
á px in X˚˚, where px “ Jpxq for some x P X since X

is reflexive. Then, ϕpxnk q Ñ ϕpxq for all ϕ P X˚, i.e. xnk á x. Since compact operators map
weakly convergent sequences to strongly convergent subsequences, we set ϕ “ x and obtain
Tpxnk ´ ϕq Ñ 0 in Y.
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Problem 6 Fall 2014 Let X be a Banach space. Show that if X˚ is separable, then X is separable.

Proof. Let tϕnu be a dense sequence in the unit sphere of X˚. Then for any q P Q, there exists an
xq,n in the unit ball of X˚ such that ϕnpxq,nq “ q. Let S “ spanQpxq,nq, which is clearly countable.
I claim that S is dense in the unit ball of X. Indeed, S is clearly dense in spanRpxq,nq, so it suffices
to show the latter is dense in the unit ball. Suppose it is not. Then, by Hahn-Banach, there is a
linear functional ϕ in the unit sphere of X˚ that vanishes on S yet does not vanish for some x on
the unit sphere. Then, for ϕn such that }ϕ ´ ϕn} ă 1

3 , |ϕpx 1
2 ,nq ´ ϕnpx 1

2 ,nq| “ 1
2 ą 1

3 , which is a
contradiction.

Problem 5 Spring 2014 Prove that l1 and l2 are separable but l8 is not. Moreover, show there is
no bounded surjective map from l2 to l1.

Proof. The Q-span of unit vectors in l1 and l2 is separable, for any a P l1, one may pick x “

px1, ....xn, 0, ...q such that }panq8
n }p ă ϵ and

řn
k“1 |xk ´ ak|p ă ϵ. However, l8 is not separable. Sup-

pose it was. Then the unit ball in l8 is separable. It suffices to show that one can find uncountably
many elements that are all at least one away from each other. But clearly, if we take the subset
of distinct binary sequences, it is uncountable and each element is a distance of exactly one away
from all others. Thus, l8 is not separable.

Now, suppose there is a bounded surjective map T from l2 to l1. Then, the adjoint T˚ is a bounded
map T˚ : l8 Ñ l2. Moreover, ker T˚K “ impTq, i.e. T˚ is injective. However, l2 is separable while
l8 is not, contradicting the existence of an injective continuous map l8 Ñ l2. Thus, there is no
bounded surjective map from l2 to l1.

Problem 6 Fall 2014 Let an be a sequence of elements in a Hilbert space H such that }an} “ 1 for
all n. Show that if the span of tanu spans H, then H is finite-dimensional. Moreover, show that if
an á 0, then 0 is in the closed convex hull of tanu.

Proof. Note that if H was infinite-dimensional, it would have countable dimension as a vector
space. But a standard Baire category theorem argument yields that any Banach space has un-
countable dimension as a vector space. Thus, H is finite dimensional.

Now, suppose that an á 0. We want to show that for some tn1 ` ... ` tnk “ 1,
řk

i“1 tni ani “ 0.

Let Ln P L8˚ be a sequence of functionals defined by Lnp f q “ 1
n!

´8

0 xne´x f pxqdx. Show that tLnu

has no weak-* convergent subsequence. Why does this not contradict Banach-Alaouglu?

Proof. This does not contradict Banach Alaoglu as the compactness of the weak-* topology on
the unit ball in L8˚ implies sequential compactness only when the topology on the unit ball is
metrizable, which is not necessarily the case (since L8 is not separable).
We now show that there is no weak-* convergent subsequence by constructing a function f such
that Lnp f q „ p´1qn. For sake of contradiction, suppose there is a convergent subsequence. Let
Ink “ rank , bnk s be a sequence of disjoint intervals such that bnk ă ank`1 , where nk is a subsequence of
the chose subsequence, such that Lnk pχInj

q ě 1 ´ ϵ and Lnk pχAq ă ϵ for some ϵ ą 0 for any A such
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that A X Inj “ ∅. This is possible since fn “ xne´x

n! converges to 0 pointwise, and it is monotonically
increasing on r0, ns and monotonically decreasing on rn, 8q, so on any interval ra, bs, the sequence
fn is bounded by suppa, bqχra,bs, i.e. by dominated convergence theorem, Lnpχra,bsq Ñ 0 as n Ñ 8.
Particularly, since }Ln} “ 1, it implies that the mass of fn is concentrated further away from the
origin as n Ñ 8, so it is possible to find such a sequence of intervals by taking an appropriate
subsequence nk. Then, f “

ř8
k“1p´1qkχInk

P L8 has norm 1 in L8, so

|Lnk p f q ´ p´1qnk | ď |ϵ ` Lnk p f ´ χInk
q| ď 2ϵ,

so we get a contradiction.

5.4 Banach Algebras

We are now interested in introducing an algebra structure on Banach spaces:

Definition 5.12. A (real/complex) Banach algebra A is a Banach space that is given the structure of an
algebra over R or C, where the multiplication map px, yq Ñ xy is continuous, or (which can be seen by
uniform boundedness and rescaling to an equivalent norm) equivalently, satisfying }xy} ď }x}}y} for all
x, y P A.

Remark 5.14. Without loss of generality, one may assume the algebra is unital, as for a nonunital algebra
A, the algebra A ˆ K with multiplication given by pa, z1qpb, z2q “ pab ` az2 ` bz1, z1z2q is Banach algebra
with unit p0, 1q, with A ãÑ A ˆ K being an isometric embedding.

Example 5.5. The space BpXq of bounded operators T : X Ñ X on a Banach space is the prototypical
example of a unital Banach algebra.

With the additional structure of an algebra, the spectrum of A now has additional useful proper-
ties.

Definition 5.13. A character is an algebra homomorphism ϕ : A Ñ K. The space of characters of A is
denoted as ∆pAq.

Proposition 5.11. ∆pAq is a weak-˚ compact subset of the unit sphere in A˚.

Proof. Note that b being invertible implies αpbq is invertible with inverse αpb´1q. If }α} “ 1, there
exists b s.t. }b ´ 1} ă 1 but αpb ´ 1q “ αpbq ´ 1 ą 1 (or vice versa). Then,

α

ˆ

b ´ 1
αpbq ´ 1

´ 1
˙

“ 0,

but the element inside is invertible since the ratio (up to flipping the fraction) has norm less than
1, which is a contradiction. It is easy to check that it is weak´˚ closed and therefore weak-˚

compact.

Proposition 5.12. Every maximal ideal of A is closed. Moreover, if A is a commutative, then there is a
bijection between the maximal ideals of A and ∆pAq.

Proof. Recall that the set of invertible elements is open (by power series expansion). If m is a max-
imal ideal of A, its closure is easily shown to be a maximal ideal containing m, so by maximality it
equals m.

We briefly prove an important lemma:
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Lemma 5.21 (Gelfand-Mazur Theorem). If a normed algebra A (over R{C) is a division algebra, then
A “ R, C, H (or A “ C).

Proof. The general case is complicated, so for simplicity, we suppose that A is a complex Banach al-
gebra. A classic result is that the spectrum of an element in a complex Banach algebra is nonempty.
But a ´ λI is noninvertible iff a ´ λI “ 0, i.e. a “ λI.

Now, if A is commutative and I is a maximal ideal, then A{I is a field over C, so by the Gelfand-
Mazur theorem, A{I “ C. Finally, we note that by the first isomorphism theorem, if α P ∆pAq, ker α
is a closed maximal ideal of codimension 1. Consequently, for commutative Banach algebras, we
have the following bijection:

∆pAq ðñ MaxSpecpAq

α Ñ ker α

α : pa Ñ amq Ð m

Recall that for any Banach space E, we have an embedding E ãÑ CpXq, where X is the unit ball
of E˚ and is therefore weak-˚ compact. Motivated by this, we consider the map A Ñ Cp∆pAqq. In
general, this may not be injective, surjective, or isometric. However, it turns out that if we restrict
ourselves to a special class of Banach algebras, this map turns out to be an isometric isomorphism.

Definition 5.14. A ˚´algebra is an algebra equipped with an anticommutative involution ˚ satisfying
pxyq˚ “ y˚x˚. If A is a Banach ˚´algebra satisfying }x˚x} “ }x}2 for all x P A, then A is called a
C˚´algebra. A homomorphism preserving the involution is called a ˚-homomorphism.

Remark 5.15. Since }xy} ď }x}}y}, the last condition is equivalent to }xx˚} “ }x}}x˚} for all x P A.

Example 5.6. The prototypical example of a C˚´algebra is that of BpHq, the space of bounded linear
operators on a Hilbert space H.

The map Φ : A Ñ Cp∆pAqq defined earlier is known as the Gelfand transform.

Definition 5.15. The spectral radius of a is ra “ supzPσpaq
|z|.

Lemma 5.22 (The spectral radius formula). ra “ limnÑ8 }an}
1
n .

Proof. Note that the the power series for pa ´ λIq´1 “ λ´1p a
λ ´ Iq´1 converges whenever |λ´1| ă

}a}´1 and diverges whenever |λ´1| ą lim supnÑ8
}an}´ 1

n . This means that the spectral radius is at
least ra ě lim supnÑ8

}an}
1
n . Conversely, by factoring an ´ λn, one sees that λ P σpaq ùñ λn P

σpanq, so rn
a ď }an}, and by taking the liminf on both sides, the claim follows.

Corollary 5.22.1. If a is normal in a C˚-algebra, then

r2
a ď }a}2 “ }a˚a} ď lim

nÑ8
}a˚n}

1
n }an}

1
n “ r2

a ,

i.e. ra “ }a}.
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Corollary 5.22.2. Since }a}2 “ }a˚a} “ ra˚a, there is a unique norm on a ˚-algebra that makes it into a
C˚´algebra.

Lemma 5.23. If a is self-adjoint, σpaq Ă R.

Proof. One easily verifies that if a is self-adjoint, then eia is unitary. Then, for λ P σpaq,

eia ´ eiλ “ peipa´λq ´ 1qeiλ “ pa ´ λqbeiλ

for b “
ř8

n“1
inpa´λqn´1

n! . b commutes with a and a ´ λ is not invertible, so eia ´ eiλ is not invertible.
If u is unitary, }u}2 “ }u˚u} “ 1, i.e. ru “ 1, and since λ P σpuq ùñ λ´1 P σpu´1q, we have that
σpuq Ă S1. Since eia is unitary, we thus have |eiλ| “ 1, i.e. λ P R.

We are now ready to state the main results of this section.

Theorem 5.24 (Gelfand Representation Theorem). If A is a commutative C˚-algebra, the Gelfand trans-
form is an isometric ˚-isomorphism.

Proof. Recall that Φpaqpαq “ αpaq. By the identity

a “
a ` a˚

2
` i

p´iaq ` p´iaq˚

2
,

it suffices to show Φ is a ˚-homomorphism on self-adjoint elements, i.e. ϕpa˚q “ ϕpaq for ϕ P

∆pAq, a P A self-adjoint. But this follows from the fact that σpaq “ σpa˚q “ Im Φpaq Ă R.

By the C˚ identity, we have that }a} “ }a2n}
1

2n Ñ ra “ }Φpaq}8, so Φ is an isometry and is therefore
injective. Note that Im Φ clearly separates points, since if α1paq ´ α2paq “ 0 for all a, then α1 “ α2.
Then, by Stone-Weierstrass and the fact that the image of an isometry is closed, Φ is surjective and
therefore an isometric ˚-isomorphism.

Corollary 5.24.1. This shows that every ϕ P ∆pAq is in fact a ˚-homomorphism.

Corollary 5.24.2. If a P A is normal, then Φ : C˚ptauq Ñ Cpσpaqzt0uq is an isometric ˚-isomorphism s.t.
Φpaq “ idσpaqzt0u. This is because ϕ P ∆pAq is uniquely determined by the image of 0 “ λ “ ϕpaq P σpaq

(by the ˚-homomorphism property of ∆pAq), i.e. ∆pAq – σpaqzt0u, and Φpaqpϕq “ Φpaqpϕpaqq “ ϕpaq,
showing that Φpaq is the identity map.

Definition 5.16 (Continuous Functional Calculus). For f P Cpσpaqq, define f paq to be the element
corresponding to f in the above isomorphism. Note that by the ˚´homomorphism property of ∆pAq, f paq “

ppaq for all polynomials ppzq. Additionally, since Φ is an isometry, fn Ñ f uniformly implies that fnpaq Ñ

f paq.

Corollary 5.24.3 (Spectral Mapping Theorem). If a is a normal element in a C˚´algebra and f P

Cpσpaqq, the corollary above implies that Im Φp f paqq “ f pσpaqq, i.e. σp f paqq “ f pσpaqq.

Proof. Note that

λ P σpaq ðñ a ´ λI not invertible ðñ Φpa ´ λIq not invertible ðñ λ P Im Φpaq.

This implies that σpaq “ Im Φpaq, and the rest follows immediately from the Gelfand representa-
tion theorem.
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We now list some applications of the continuous functional calculus.

Proposition 5.13. TFAE:

(a) a is self-adjoint and σpaq Ă r0, 8q.

(b) a “ b2 for some self-adjoint b.

(c) a is self-adjoint and }λ ´ a} ď |λ| for some/any λ ě }a}.

Proof. The forward direction is immediate by applying the spectral mapping theorem to f pxq “
?

x and the fact that the continuous functional calculus commutes with the ˚ operation. The back-
ward direction is immediate by applying the spectral mapping theorem to f pxq “ x2. Finally,

}λ ´ a} “ sup
zPσpaq

|λ ´ z| ď λ

for σpaq Ă r0, 8q, and the converse can be established similarly.

Definition 5.17. If any of these hold, a is called a positive element, denoted a ě 0. We denote A` as the
cone (i.e. a vector space closed under positive scalars) of positive elements. Note that this is indeed a
cone by part (c) of the above characterization and the triangle inequality.

Example 5.7. If |a| :“
?

a2, a˘ :“ 1
2 p|a| ˘ aq, then a˘, |a| ě 0 and a`a´ “ a´a` “ 0.

Lemma 5.25. If 0 ď a ď b, }a} ď }b}. If a, b are also invertible, then 0 ď b´1 ď a´1.

Proof. Note in general that if a, b commute, and fa, fb are the continuous functions corresponding
to a, b, a ď b ðñ fa ď fb. Then, fb ď f}b} as functions on C˚ptbuq, so a ď b ď }b}, i.e. fa ď f}b}, so
}a} “ } fa}8 ď }b}. For the second property, note that a ď b ùñ c˚ac ď c˚bc, since A` “ ta˚a :
a P Au. Thus, a ď b implies b´ 1

2 ab´ 1
2 ď 1, so

}a
1
2 b´1a

1
2 } “ }b´ 1

2 a
1
2 }2 “ }b´ 1

2 ab´ 1
2 } ď 1,

i.e. a
1
2 b´1a

1
2 ď 1. Thus,

b´1 “ a´ 1
2 pa

1
2 b´1a

1
2 qa´ 1

2 ď a´1.

The main theorem of C˚-algebra states that the canonical example of a C˚´algebra is in fact the
only possible case, up to isomorphism.

Theorem 5.26 (Gelfand-Naimark-Segal (GNS) Theorem). Every C˚´algebra is isometrically ˚-isomorphic
to a closed subalgebra of BpHq for some Hilbert space H.

Another important class of algebras are the so-called von Neumann algebras.

Definition 5.18. A von Neumann algebra (or a W˚´algebra) is a C˚´algbra A s.t. there exists an
algebra B s.t. B˚ “ A, i.e. A has a predual. Equivalently, A is a weakly closed subalgera of BpHq.

Theorem 5.27 (Von Neumann Bicommutant Theorem). If A Ă BpHq :“ G is a ˚-subalgebra, then the
von Neumann algebra generated by A, i.e. the weak closure of A, is equal to the strong closure of A and is
equal to A2 “ CGpCGpAqq, the bicommutant of A.
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Proof. Note that A Ă A2. If T R A1, there exists an operator S and a weak neighborhood where
xTSx, yy ´ xSTx, yy “ 0, i.e. A1 is weakly closed. Thus, the weak closure of A is contained in A2.
Since strongly closed implies weakly closed, it follows that the strong closure is a subset of the
weak closure. Finally, it suffices to show that any open neighborhood of T P A2 in the strong
topology contains an element of A. Note that for h P H, the norm closure H1 of Ah is a closed
subspace of G, and let P be the corresponding projection.

Lemma 5.28. P P A1.

Proof. For x P H, let Onh Ñ Px. For S P A, we thus have SOnh Ñ SPx P H1, so PSPx “ SPx, i.e.
PSP “ SP for all S P A. Finally, using the fact that A is a ˚-subalgebra, we get that

xx, SPyy “ xx, PSPyy “ xPS˚Px, yy “ xx, PSyy,

so PS “ SP, i.e. P P A1.

Then, Th “ TPh “ PTh P H1, so by the definition of H1, }Th ´ Sh} ă ϵ for some S P A for any
ϵ ą 0. Thus, there exists a sequence Sn Ñ T in the strong topology, so T is in the strong closure of
A.

5.5 Borel and Holomorphic Functional Calculus

We have seen that for a C˚´algebra, we can define a continuous functional calculus. We are
interested in defining a more restrictive functional calculus on a more general class, namely, just
Banach algebras.

Definition 5.19. A function f : U Ă C Ñ B with values in a Banach space B is analytic/holomorphic
if limzÑz0

f pzq´ f pz0q

z´z0
exists for all z P U. f is weakly analytic if ϕ ˝ f is analytic for all ϕ P B˚.

Remark 5.16. If f is continuous, weakly analytic ðñ analytic.

Definition 5.20. For a function f : X Ñ B with values in a Banach space B, one may define the Bochner
integral the same way one defines the Lebesgue integral on R. In particular, if sn Ñ f is a sequence of
simple functions, one may define

´
f “ lim

´
sn, which can be shown to be Cauchy and independent of

the chosen sequence. The Bochner integral satisfies
´

T f “ T
´

f for any bounded linear operator T, and
one has all the classic complex and real analytic results (DCT, Monotone Convergence, Fatou, Cauchy’s
Theorem/Integral Formula).

Remark 5.17. Radon-Nikodym property.

Definition 5.21 (Holomorphic Functional Calculus). For f : U Ñ C holomorphic, a P B, where B is a
Banach algebra and a P B, and σpaq Ă U, define

f paq :“
1

2πi

ˆ
γ

f pzq

z ´ a
dz,

where γ “ Bp0, ra ` 1q encloses σpaq and 1
z´a is the resolvent mapping.

Proposition 5.14. (a) The integral is well-defined and independent of the choice of γ.

(b) p f gqpaq “ f paqgpaq, i.e. f Ñ f paq is a homomorphism.

(c) If fn Ñ f normally, then fnpaq Ñ f paq.
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(d) idpaq “ a and the calculus agrees with the continuous functional calculus on a C˚´algebra.

Proof. The well-definedness is a consequence of Cauchy’s integral formula for the Bochner inte-
gral. The fact that the map is a homomorphism follows from Fubini. Indeed, if we assume that γ1
is in the interior of the region bounded by γ2,

f paqgpaq “
1

p2πiq2

ˆ
γ1

ˆ
γ2

f pz1qgpz2q
pz1 ´ aq´1 ´ pz2 ´ aq´1

z2 ´ z1
dz1dz2

“
1

p2πiq2

„ˆ
γ1

f pz1q

z1 ´ a

„ˆ
γ2

gpz2q

z2 ´ z1
dz2

ȷ

dz1 ´

ˆ
γ2

gpz2q

z2 ´ a

„ˆ
γ1

f pz1q

z2 ´ z1
dz2

ȷ

dz1

ȷ

“
1

2πi

ˆ
γ1

f pz1q

z1 ´ a

„

1
2πi

ˆ
γ2

gpz2q

z2 ´ z1
dz2

ȷ

dz1 “
1

2πi

ˆ
γ1

f pz1qgpz1q

z1 ´ a
dz1 “ p f gqpaq,

where the second term vanishes since z1γ2 is outside the region bounded by γ1. Normal conver-
gence implies convergence in norm immediately by definition, and

1
2π

ˆ
γ

z
z ´ a

dz “
ÿ

ně0

an
ˆ

γ

1
zn dz “ a

by basic properties of complex integrals. Finally, for continuous f , let pn Ñ f be a normally
convergent sequence of polynomials. Then, since the holomorphic and continuous calculi agree
on polynomials, by the uniform convergence property, pnpaq Ñ f paq, which is the same element
in both functional calculi.

Remark 5.18. Note that the proof requires that f be holomorphic on σpaq as well, so one cannot apply the
calculus to, for instance, meromorphic functions with poles in σpaq.

Notice that the curve γ encloses the entire spectrum. If it did not enclose any of the spectrum, the
resolvent would be analytic and the integral would evaluate to 0 by Cauchy’s theorem. But what
if we include only part of the spectrum?

Definition 5.22. For a curve γ avoiding σpaq and enclosing some compact subset K Ă σpaq, define the
Riesz projector

ΠK :“
1

2πi

ˆ
γ

1
z ´ a

dz.

Proposition 5.15. (a) ΠK is a projection that commutes with a, and if a is self-adjoint, ΠK is an orthog-
onal projection (i.e. self-adjoint and s.t. Π2

K “ ΠK).

(b) If a is a bounded operator on a Banach space, Im ΠK, ImpI ´ ΠKq are disjoint a-invariant subspaces
with σpa|Im ΠK q “ K, σpa|ImpI´ΠKqq “ σpaqzK.

Proof. (a) Following the calculation in Proposition 5.12 with f ” g ” 1 and rγ being a per-
turbation containing γ, we obtain that gpz2q “ 1, so Π2

K “ ΠK. If a is self-adjoint, then
ppz ´ aq´1q˚ “ pz ´ aq´1, so letting γ be a circular contour and reparametrizing to go in the
counterclockwise direction yields Π˚

K “ ΠK. The fact that ΠK commutes with a is analogous
to proof of the homomorphism property of the holomorphic functional calculus.
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(b) The commutativity implies that Im ΠK, ImpI ´ ΠKq are a-invariant, and it is easy to check
that they are disjoint. Note that ρpAq Ă ρpAΠKq, since the resolvent of A restricted to Im ΠK
is the resolvent of AΠK. Applying the same claim to I ´ ΠK yields ρpAΠKq Ă ρpAq.

Remark 5.19. This suggests that the Riesz projector is to be interpreted as a projection onto the correspond-
ing part of σpaq.

Of particular interest is then the case whenever a is a compact operator, since the spectral theorem
yields a discrete spectrum in this case.

Theorem 5.29. If T : X Ñ X is a self-adjoint operator with discrete spectrum (e.g. when T is compact),
then one may write X “

À

Im Πλi , where Πλi are the projections onto kerpT ´ λiq, yielding the spectral
decomposition

X “
à

i
kerpT ´ λiq.

Corollary 5.29.1. This immediately yields the decomposition into invariant subspaces for finite-dimensional
spaces, which is known as the Jordan canonical form.

Now that we have developed two functional calculi, we are ready to formalize the most general
functional calculus for Banach algebras, known as the Borel functional calculus. For this, we need
the most general version of the spectral theorem.

Theorem 5.30 (Spectral Theorem, General Version). The Gelfand embedding Φ : CpσpAqq ãÑ BpHq

for a C˚´algebra A Ă BpHq may be extended to a ˚´homomorphism L8pσpAqq Ñ BpHq.

Proof. We sketch the proof. Define ψx,yp f q “ xΦp f qx, yy “
´

f dµx,y for f P CpσpAqq, where µx,y
is the measure given by the Riesz-Markov representation theorem. Moreover, f Ñ

´
f dµx,y is

bounded and bilinear for f P L8. Thus, there exists a unique A f s.t.
´

f dµx,y “ xA f x, yy. One may
then arduously verify that f Ñ A f is a n injective ˚-homomorphism.

Remark 5.20. Given T P BpHq normal, the spectral theorem corresponding to the Gelfand embedding of
C˚ptT, T˚uq yields the the maps νξ : E Ñ xAχE ξ, ξy, which are collection of measures called the spectral
measures of T associated to ξ. For }ξ} “ 1, these are probability measures.

Definition 5.23 (Borel Functional Calculus). The embedding L8pσpAqq Ñ BpHq is called the Borel
functional calculus, defining f pTq P BpHq for a normal operator T.

Example 5.8. Recall that ∆ : H2 Ñ L2. Consider the Schrodinger equation

iut “ ´∆u, up0q “ u0 P H2.

We may formally define the solution
uptq “ eit∆u0,

where we may now rigorously define the unbounded densely-defined operator eit∆ : L2 Ñ L2 as

eit∆u “

ˆ
γ

eitz

pz ´ ∆q´1 dz,
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which may be equivalently expressed in terms of the Fourier transform as

peit∆uqpxq “ F´1peitξ2
puq “

1
p4πitq

n
2

ˆ
Rn

ei |x´y|2
4t upyqdy.

By dominated convergence, one may see that for u0 P L1 X L2, u is continuous and satisfies the dispersive
estimate

}uptq}8 ď
}u0}1

|4πt|
n
2

.

5.6 Baire Category Theorem

Recall the Baire Category Theorem:

Definition 5.24. A subset X of a topological space is meager or of first category if it is a countable
union of nowhere dense sets. Otherwise, X is called nonmeager or second category. The complement of a
meager set is called comeager or residual.

Remark 5.21. The closure of a nowhere dense set is nowhere dense.

Theorem 5.31 (Baire Category Theorem). TFAE:

(a) A topological space X is nonmeager.

(b) A comeager set is dense.

(c) A countable intersection of open dense sets is dense.

If any of these conditions hold in a topological space X, X is called a Baire space. Moreover, every complete
metric space and locally compact Hausdorff space is a Baire space.

Proof. We prove the equivalences. Note that the complement of an open dense set is a nowhere
dense set. Then, the last statement implies that the union of nowhere dense sets cannot be the
entire space. A countable intersection of open dense sets is a comeager set. Conversely, if A is
comeager, Acc

Ă A is the countable intersection of open dense sets, and is therefore dense.

Now, suppose X is a complete metric space, Ui a collection of open dense sets, and let x1 P A Ă X
be an open set. Then A X U1 contains a closed ball. Proceeding inductively, we choose a sequence
of balls Bpxi, ϵiq Ă Bpxi´1, ϵi´1q X Ui´1 for ϵi Ñ 0. Then, the sequence is Cauchy, converging to
x P A X

Ş

i Ui, so
Ş

i Ui is dense in X.

Remark 5.22. It is very important to note that even though meager sets are countable unions of nowhere
dense sets, meager sets can still be dense. For instance, Q Ă R is meager and dense, and so is C1pr0, 1sq Ă

Cpr0, 1sq. Meanwhile, comeager sets are always dense (in a complete metric space).

Example 5.9. (a) Q is an Fσ but not Gδ set, for if Q “
Ş

i Ui, for some enumeration qi of the rationals,
Ş

Uiztqiu “ ∅, contradicting Baire category theorem. Similarly, RzQ is Gδ but not Fσ.

(b) A Banach space must have uncountable dimension as a vector space. Otherwise, it is the union of
finite-dimensional subspaces, which are nowhere dense, which contradicts the Baire category theorem.
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(c) Consider the subspace X Ă Cpr0, 1sq of functions differentiable at some point x. Define

An,m “ t f P X : Dx, |x ´ t| ă
1
m

ùñ

ˇ

ˇ

ˇ

ˇ

f pxq ´ f ptq
x ´ t

ˇ

ˇ

ˇ

ˇ

ď nu.

By Bolzano-Weierstass, one can verify that An,m is closed. One can also show that An,m has empty
interior and so is nowhere dense, so by Baire category, we conclude that X Ă

Ť

An,m is meager in
Cpr0, 1sq. Thus, "most" continuous functions are in fact nowhere differentiable.

(d) (*) If f P C8pr0, 1sq is such that f pnqpxq “ 0 for each x for large enough n dependent on x, then f is
a polynomial. Indeed, by way of contradiction, consider the sets

Xn “ t f pnqpxq “ 0u, S “ tx : f not a polynomial on any open interval containing xu.

Note that S is nonempty and closed. Applying the Baire category theorem to X, we get that pa, bq X

S Ă Xn X S for some n. at least one of them must have nonempty interior. Now, on any open subset
of pa, bqzS, by the definition of S and Xn, f has to be some polynomial of degree d ă n. But then
pa, bqzS Ă Xn, so f is a polynomial of degree at most n on pa, bq, a contradiction.

The real power of Baire category theorem is to provide an elementary proof of the Open Mapping
Theorem from functional analysis.

Theorem 5.32. If T : X Ñ Y is a bounded linear map between Banach spaces, either T is surjective and
open, or its image is of first category in Y.

Proof. If T is surjective, the we note that by the Baire category theorem TBp0, nq has nonempty
interior for some n P N. In particular, it must contain an open neighborhood of the origin, which
completes the proof.

Remark 5.23. Thus, the approach is as follows. If V Ă W is a closed proper subspace, as long as the
inclusion map is continuous, the above theorem implies that V is of first category in W. If V is open, one
must describe V as a union of closed subspaces, each of which is meager.

5.7 Borel Sets

Remark 5.24. Recall that the product topology (as opposed to the box topology) is the topology gen-
erated by rectangles with finitely many nontrivial components (and is more useful since it satisfies Ty-
chonoff’s theorem, which says that any product of compact topological spaces is compact).

Definition 5.25. The product σ-algebra on a product of measurable topological spaces is the smallest
σ-algebra that makes the projection maps πi, measurable, i.e. the σ-algebra generated by cylinder sets -
products of at most finitely many nontrivial measurable sets. If the product is countable, then the product
σ-algebra is in fact generated by arbitrary rectangles, that is, products of elements of the respective σ-
algebras.

Proposition 5.16. If BpRq,LpRq, are the Borel and Lebesgue σ-algebras of R, respectively, then

BpRqbn “ BpRnq,

but
LpRqbn Ĺ LpRnq.
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Proof. BpRnq is generated by definition by the open sets in Rn, which are by definition at most
countable unions of products of open sets. Thus, BpRnq Ă BpRqbn. Conversely, a rectangle A ˆ

B can be written as the intersection A ˆ X X X ˆ B, where both sets are measurable since the
projection maps are continuous. We thus conclude that BpRqbn Ă BpRnq (and an analogous
argument holds for the Lebesgue measure). Finally, if V Ă R is unmeasurable, V ˆ t0u is Lebesgue
in Rn since it is null, but since the inclusion i : x Ñ px, 0q is measurable, it is not in the product
σ-algebra.

Remark 5.25. In general, since the projection maps are continuous in the product topology, they are mea-
surable. Thus, any cylinder set is a finite intersection of preimages under projections of Borel sets, and is
thus Borel measurable on the product space, which shows that

Â

BpXiq Ă Bp
ś

Xiq. Conversely, note that
not every open set is a cylinder set (since one can take unions of cylinder sets), so equality does not
necessarily hold. However, if each space is second-countable (i.e. has a countable base) and the product is
countable, then each open set is a union of cylinder sets, so Bp

ś

Xiq Ă
Â

BpXiq.

Example 5.10. Take X ˆ X with the discrete topology, where X has cardinality greater than R. Then,
the diagonal is a union of open sets and is therefore measurable. If the diagonal was measurable in the
product σ-algebra, it has to be the union of at most uncountably many sets, so at least one set has two points
pu, uq, pv, vq, implying pu, vq is in the diagonal, a contradiction.

A popular type of question is to show that a certain subset of a set is Borel, i.e. a countable
union and intersection of open or closed sets. The typical approach in these problems is to con-
vert between logic-based definitions and the corresponding countable unions and intersections of
open/closed sets.

Lemma 5.33. The set of points of continuity of a measurable function f : R Ñ R is Gδ.

Proof. First, since we want to avoid talking about individual continuity points (as there are un-
countably many of them), we rephrase continuity as a property on an open set. In particular,
notice that f is continuous at c iff

@ϵ ą 0Dδ ą 0, @y, z P pc ´ δ, c ` δq ùñ | f pyq ´ f pzq| ă ϵ,

We thus define

An “

"

x : Dδ ą 0, @y, z P px ´ δ, x ` δq ùñ | f pyq ´ f pzq| ă
1
n

*

.

Then,
č

n
An “ tx : @ϵ ą 0Dδ ą 0, @y, z P px ´ δ, x ` δq ùñ | f pyq ´ f pzq| ă ϵu,

which is in fact the set Cp f q of continuity points of f . It remains to show that An is open. But if y
is sufficiently close to x P An, taking δy “

δx
100 suffices, and we are done.

Remark 5.26. This proof immediately generalizes to f : X Ñ R for an arbitrary metric space R.

Lemma 5.34. On R, the converse holds - for every Gδ set X Ă R, there exists a function that is continuous
precisely on X.
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Proof. Let X “
Ş

i Ui be a Gδ set. WLOG, suppose that Ui`1 Ĺ Ui. First, note that the function
χUi ` 1

2 χUc
i XQ is continuous on the open set Ui, and discontinuous everywhere else, since if it was

continuous at x P Uc
i , it would be close to 0 or 1

2 in some open neighborhood of x, and so it would
have to be 0 or 1

2 on some open neighborhood of x. But that is impossible since f is 0 or 1
2 on a

subset of the rationals/irrationals. We now define the function

f pxq :“
1
2

8
ÿ

i“0

1
2i pχUi `

1
2

χUc
i XQq.

Note that the function takes the following values:

f pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 x P
Ş

i Ui,
1 ´ 2´n´1 ´ 2´n´2 x P pUnzUn`1q X Q,
1 ´ 2´n´1 x P pUnzUn`1q X Qc,
1
2 x P Uc

0 X Q,
0 x P Uc

0 X Qc.

Now, if x P
Ş

i Ui, for any xk Ñ x, xk P Un for any large enough n, so

f pxkq ě 1 ´ 2´n´1 ´ 2´n´2 Ñ 1

as xk Ñ x and n Ñ 8, so f is continuous on X. If x P Uc
0 X Qc, then f is continuous at x iff f is 0

on an open neighborhood of x, which is impossible since it is only 0 on a subset of irrationals. If
x P Uc

0 X Q, then f is continuous at x iff all irrational points around it are in U0zU1 and all rational
points are in Uc

0, which contradicts the fact that U0 is open. Finally, if x P UnzUn`1 is rational, then
it can be approximated by a sequence xk of irrational points in at least Un, so

f pxkq ě 1 ´ 2´n´1 ą 1 ´ 2´n´1 ´ 2´n´2,

which shows that f is not continuous at x. If x P UnzUn`1 is irrational, then if x is a limit of point
of Un`1, there is a sequence xk Ñ x such that

f pxkq ě 1 ´ 2´n´2 ´ 2´n´3 ě 1 ´ 2´n´1,

and if x is not a limit point of Un`1, there exists a sequence xk of rationals in UnzUn`1 converging
to x, so that

f pxkq “ 1 ´ 2´n´1 ´ 2´n´2 ă f pxq,

which shows f is not continuous at x. Thus, the constructed example is continuous precisely on
the set X.

Corollary 5.34.1. There does not exists a function continuous precisely on Q.

We now consider a much more involved question of differentiability with this technique.

Proposition 5.17. The set of points where a measurable f : R Ñ R does not possess a finite derivative is
Gδσ, i.e. the set of points of differentiability is Fσδ.
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Proof. Similarly, we rephrase nondifferentiability as a local property. Define Gpa, bq “
f paq´ f pbq

a´b .
Then, notice that a function is not differentiable at c iff limaÑc Gpa, cq does not exist, i.e.

Dϵ ą 0, @δ ą 0, Dy, z P pc ´ δ, c ` δq ùñ |Gpy, cq ´ Gpz, cq| ă ϵ.

We thus define

An,m “

"

x : Dy, z P

ˆ

x ´
1
n

, x `
1
n

˙

ùñ |Gpy, xq ´ Gpz, xqq| ą
1
m

*

.

We claim this is an open set. Indeed, if |x1 ´ x| ă δ :“ 1
n ´ maxp|z ´ x|, |y ´ x|q, where y, z are

chosen to satisfy the condition above, then for |x1 ´ x| ă δ
10 ,

|Gpy, x1q ´ Gpz, x1q| ą
1
m

and y, z P
`

x1 ´ 1
n , x1 ` 1

n

˘

. Thus,
ď

n

č

m
An,m “ tx : @ϵ ą 0Dδ ą 0Dy, z P px ´ δ, x ` δq : |Gpy, xq ´ Gpz, xq| ą ϵu

is precisely the set of points where f is not differentiable, and since An,m is open, this is a Gδσ set.
Thus, the set of points ∆p f q of differentiability is Gc

δσ “ Fσδ.

Corollary 5.34.2. There is no function that is differentiable precisely on the Vitali set.

Corollary 5.34.3. The set of points where the derivative is continuous is a Gδ subset of an Fσδ set, i.e. a
countable intersection of sets that are themselves an interection of an open set with an Fσδ set, i.e. Cp f 1q is
also an Fσδ set. Recursively, this implies that Cp f pnqq, ∆np f q are at worst Fpσδqn sets.

In fact, one can say something stronger about Cp f 1q for an everywhere differentiable function f .

Proposition 5.18. If f is differentiable, then Cp f 1q is a dense Gδ subset of R.

Proof. The previous corollary implies that the set is Gδ. To show that it is dense, note that f 1 is the

pointwise limit of continuous functions fnpxq “
f px` 1

n q´ f pxq
1
n

. Define

Dnp f q “ tx : lim sup
yÑx

f pyq ´ lim inf
yÑx

f pyq ě
1
n

u,

and note that since Cp f 1q “
Ş

Dc
np f 1q, it suffices to show that Dc

n is dense for all n, as Cp f 1q is then
an intersection of dense open sets and therefore dense by the Baire category theorem.

For sake of contradiction, suppose Dc
n X I “ ∅ for an open set I. Now, define Ek “

Ş

i,jěktx :
| fipxq ´ f jpxq| ď 1

4n u, and note that since fn converge pointwise, i.e.
Ť

k Ek “ X, and Ek are closed,
by Baire Category there exists k s.t. Ek X I has nonempty interior. But since each fi is continuous,
taking the limit i Ñ 8 implies that on that interior, | f pxq ´ f pyq| ă 3

4n ă 1
n , contradicting the fact

that Dc
n X I “ ∅.

Corollary 5.34.4. If f is everywhere differentiable, then the set of points where f 1 is continuous is uncount-
able.
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Remark 5.27. Despite this, there exist everywhere differentiable functions whose derivatives are continuous
only on a measure zero set. For example, consider the construction of the Volterra function: take the
function x2 sinp 1

x q on r0, αs, cut it off at the largest value of x where the derivative is zero, mirror across
x “ α, and extend it to be a constant. Then, translate it to the first interval removed from the fat Cantor
set Cβ of measure 0 ă β ă 1. Repeat this process for each of the subintervals removed in the fat Cantor
set. Then, the resulting function Vα has the following properties: since the complement of Cβ is open and
dense, the function is in fact differentiable with bounded derivative Cc

β. On the fat Cantor set, the function
identically vanishes, and is in fact differentiable with derivative 0, since x2 sinp 1

x q is differentiable with
derivative 0 at x “ 0. However, V1

α is discontinuous on Cβ, since there is a sequence of endpoints (at
which the derivative is discontinuous) converging to every point of Cβ. In particular, V1

α is not Riemann
integrable. Now, in each of the interval removed, we can put another copy of the Volterra function, e.g. if V1

α

is discontinuous on a fat Cantor set of measure 1
2 , we can cover half of the remaining measure by copies of the

function. Repeating this countable process countably many times yields the Volterra function Vpxq, which
is differentiable everywhere but the derivative is discontinuous a.e. In particular, this a counterexample to
the Fundamental Theorem of Calculus if the derivative is not assumed to be integrable.

Problem 1 Fall 2014 Show that L3pRq X L2pRq is Borel in L3pRq.

Proof. The idea is to break up the problem into smaller pieces that are more manageable and where
we have known results. In particular, note that we have a relation between the L2 and L3 norm on
a finite measure set A, stating that } f }2 À } f }3. I claim that

An,k :“ t f P L3 : } f }2
L2pr´k,ksq

ă nu.

is open in L3. Indeed, suppose f P L3 and } f }2
2 ă n. Holder implies that for all ϵ ą 0, there exists a

δ ą 0 such that } f ´ g}2 ă ϵ whenever } f ´ g}3 ă δ. In particular, this implies that for any values
of } f }2

2 ă n, we can choose δ ą 0 such that }g}2
2 ď p} f ´ g}2 ` } f }2q2 ă n whenever } f ´ g}3 ă δ,

showing that An,k is open in L3. Then,

L3pRq X L2pRq “
ď

nPN

č

kPN

An,k,

i.e. L3 X L2 is a Gδσ set.

Show that L2pRq X L8pRq is Borel in L8pRq.

Proof. The issue with applying the same method as for the last problem is that the Holder bound
gives us the reverse direction, i.e. } f }2 À } f }8. Thus, we instead attempt to prove that the sets

Bn,k “ t f P L8 : } f }2
L2pr´k,ksq

ď nu

are closed in L8. Indeed, suppose fn P BN,k, fn Ñ f in L8. Then, by Fatou, } f }2
2 ď lim inf } fn}2 ď

N, and so f P BN,k, i.e. BN,k is closed in L8. Then, as before,

L2pRq X L8pRq “
ď

nPN

č

kPN

Bn,k,

i.e. it is a Fσ set.

70



Let f : Rn Ñ R be measurable. Show that the set of points of continuity of f is Borel.

Proof. Again, the idea is to construct an intersection or union of open/closed sets. Here, one has to
specifically rely on the fact that contuinuity is "local": it tells you something about the oscillation
of a function in a neighborhood of a point. Particularly, we will use the following definition of
continuity, which avoids talking about continuity "at a point."

f continuous at x ðñ @ϵ ą 0Dδ ą 0, |y ´ x| ă δ, |z ´ x| ă δ ùñ | f pyq ´ f pzq| ă ϵ.

Then, define

Cϵ :“ tx : Dδ ą 0 : |y ´ x| ă δ, |z ´ x| ă δ ùñ | f pyq ´ f pzq| ă ϵu.

Note that Cϵ does not parametrize by δ, as that would be too weak to state openness or closedness.
I claim that cϵ is open. Indeed, if |x1 ´ x| ă δ

2 , then |y ´ x1|, |z ´ x1| ă δ
2 satisfies the conditions of

Cϵ. Thus, Cϵ is open, and
Cp f q “

č

nPN

C 1
n
,

i.e. Cp f q is a Gδ set.

Let f : Rn Ñ R be continuous. Show that the set of points of differentiability of f is Borel.

Proof. We attempt the same approach, yet as always, we want to use the right definition of dif-
ferentiability. In particular, let us rely on the previous result, defining the continuous function
Fpx, hq “

f px`hq´ f pxq

h .

f differentiable at x ðñ @ϵDδDY : |h| ă δ ùñ |Fpx, hq ´ Y| ă ϵ.

Now, define
Dϵ,δ,Y “ tx : |h| ă δ ùñ |Fpx, hq ´ Y| ă ϵ.u

Then,
Dp f q “

ď

kPQ

č

mPN

ď

nPN

D 1
m , 1

m ,k,

which is a Gδσδ set. For general measurable functions, note that Dp f q Ă Cp f q, so Dp f q is Borel is
Borel on Cp f q, i.e. it is Borel in R.

Let T : CcpRq Ñ CcpRq be such that }T f }8 ď } f }8 and µtx : |T f pxq| ą λu ă
} f }1

λ u. Show that
}T f }p À } f }p for all 1 ď p ď 8.
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5.8 Sobolev Spaces

We have seen that often times, we are able to take derivatives of functions in some sense. For
instance, BV functions are precisely those whose derivative is a measure. But what if the derivative
itself is a function?

Definition 5.26. Let Ω Ă Rn be open. A function g : Ω Ñ R is the α-th weak derivative of f if´
Ω f Dαϕ “ p´1q|α|

´
Ω Dαgϕ for all ϕ P C8

c pΩq.

We now consider the spaces of functions whose weak derivative is integrable.

Definition 5.27. For k P N and 1 ď p ď 8 The Sobolev space Wk,ppΩq is the space of functions whose
first k derivatives are in Lp, i.e. the space of functions with finite norm

} f }Wk,p “

¨

˝

ÿ

|α|ďk

}Dα f }
p
p

˛

‚

1
p

for p ă 8 and
} f }Wk,8 “

ÿ

|α|ďk

}Dα}8.

Proposition 5.19. Wk,ppΩq is a Banach space.

Proof. If fn is Cauchy is the Wk,p norm, then the candidates for the limit f and its derivatives Dα f
are clear. It remains to show that

ˆ
f Dαϕ “ lim

nÑ8

ˆ
fnDαϕ “ p´1q|α| lim

nÑ8

ˆ
Dα fnϕ “ p´1q|α|

ˆ
Dα f ϕ,

which shows the claim. The case p “ 8 can be handled similarly.

Since Wk,p can be thought of as a collection of Lp spaces, Sobolev spaces inherit many properties
from Lp. For instance, Wk,p is separable iff p ă 8, reflexive with dual Wk,p1

for 1 ď p ă 8, and
Wk,2 :“ Hk is a Hilbert spaces. As always, we have density results, such as the following:

Proposition 5.20. For p ă 8, C8
c is dense in Wk,p in the Wk,p norm.

Proof. Take an approximation ϕϵ to the identity. Then, since Dαp f ˚ ϕϵq “ pDα f q ˚ ϕϵ, if Φ P C8
c is

1 on Bp0, 1q and 0 on Bp0, 2q, then Φpϵxqp f ˚ ϕϵq is a sequence of compactly supported functions
converging to f in Wk,p.

But really, why do we care about Sobolev spaces? This is true mainly because of a wide number of
so-called Sobolev embedding theorems, which trade regularity for higher integrability. We begin
with the simplest case of W1,p.

Definition 5.28. For p ă n, define the Sobolev conjugate p˚ ą p of Wk,p by

1
p˚

“
1
p

´
k
n

.
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Theorem 5.35 (Gagliardo-Nirenberg). If Ω is bounded, then W1,ppΩq ãÑ Lp˚

pΩq is a continuous
embedding, i.e.

}u}Lp˚ ď C}u}W1,p .

Proof. Note that

|u| “

ˇ

ˇ

ˇ

ˇ

ˆ
uyi dyi

ˇ

ˇ

ˇ

ˇ

ď

ˆ
|∇u|dyi.

Thus, by generalized Holder,

ˆ
|u|

n
n´1 dx1 ď

ˆ
ź

i

ˆˆ
|∇u|dyi

˙
1

n´1

dx1 ď

ˆˆ
|∇u|dy1

˙
1

n´1
˜

n
ź

i“2

¨
|∇u|dx1dyi

¸
1

n´1

.

Next, we pull out the y2 factor, integrate with respect to x2, and use generalized Holder again to
get ˆ

|u|
n

n´1 dx1dx2 ď

ˆ¨
|∇u|dx1dy2

˙
2

n´1 ź

iě3

ˆ˚
|∇u|dx1dx2dyi

˙
1

n´1

.

Continuing in this fashion, we get

ˆ
|u|

n
n´1 dx ď

ˆˆ
|Du|dx

˙
n

n´1

,

which yields the estimate for p “ 1. For p ą 1, apply the estimate to v “ |u|γ and use Holder to
get that if γ is chosen so that

γn
n ´ 1

“ pγ ´ 1q
p

p ´ 1
,

then
γn

n ´ 1
“

np
n ´ p

“ p˚.

This yields the general Gagliardo-Nirenberg inequality.

The way to interpret Gagliardo-Nirenberg is that for one derivative in Lp, you get an extra 1
n in

integrability.

Now, what happens if p ą n? Surprisingly, it then turns out that the function is Holder continuous.

Theorem 5.36 (Morrey’s Inequality). The inclusion W1,ppRnq Ñ C0,γpRnq is continuous for γ “ 1 ´ n
p .

Proof.

Thus, we have that for a function with one derivative in Lp, we get 1
n of integrability if p ă n and

1 ´ n
p of Holder continuity if p ą n. We can now generalize these statements to Wk,p.

We may now generalize this to having k derivatives in Lp, which is known as the general Sobolev
embedding theorem.
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Theorem 5.37 (General Sobolev Inequalities). (a) Sobolev Embedding Theorem: Let p˚, q˚ be the
Sobolev conjugates of Wk,p, W l,q, respectively. Then, if p ă n and q ą p, k ą l, if

p˚ “ q˚,

then one has a continuous embedding

Wk,ppRnq Ď W l,qpRnq.

(b) Rellich-Kondrachov Theorem: If k ą l and

p˚ ą q˚,

then on a bounded open set U, then the embedding is compact.

(c) If pk ą n, r P N, and

r “

Z

pk ´ n
p

^

, α “

"

pk ´ n
p

*

,

then one has a continuous embedding

Wk,ppRnq Ă Cr,αpRnq.

Remark 5.28. How do we interpret the inequality above? First of all, if we embed a Sobolev space into
another Sobolev space, we will lose derivatives and gain integrability, so q ą p, k ą l. Then, we need p ă n
as in the proof of Gagliardo-Nirenberg. The case p˚ “ q˚ represents a critical case of the inequality, and the
if the two are not equal, then we have enough regularity to establish compactness. Finally, the last part is a
generalization of Morrey’s inequality, which tells us that if our derivatives are very integrable, then that is
as good as the function being continuous differentiable.

Corollary 5.37.1. If pk ą n, then Wk,ppRnq Ă CpRnq, and thus consists of continuous functions. For
example, for n “ 1, W1,1pRq “ ACpRq is the space of continuous functions. For n “ 2, H2pR2q Ă CpR2q.

Here is the proof of the Rellich-Kondrachov Theorem:

Proof. Let um P Wk,p be a bounded sequence, and let uϵ
m be the corresponding mollifiers. The goal

is to show that uϵ
m Ñ um uniformly in m as ϵ Ñ 0, as then, by applying Arzela-Ascoli on uϵ

m, one
may obtain

lim sup }uϵ
m ´ uϵ

n}q “ 0, }uϵ
n ´ un}q ď

δ

2
ùñ lim sup }um ´ un} ď δ,

and finish with standard diagonal argument. To show uniform convergence, we can easily show
that uϵ

m Ñ um uniformly in L1, and since q˚ ă p˚, by interpolation, we can bound the Lq˚

norm by
L1 and Lp˚

norms, where the latter may then be bounded by Gagliardo-Nirenberg.

5.8.1 Fractional Sobolev Spaces

Now, recall that the Fourier symbol of the derivative operator is ξ1. What if we take noninteger
powers of ξ?
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Definition 5.29. For k P R, p ă 8, the Bessel potential space Hk,ppΩq is the space of functions with
finite Sobolev norm

} f }HkpΩq “ }F´1xξykF f }p,

where xξy “ p1 ` |ξ|2q
1
2 is the Japanese bracket.

Finally, we may attempt to generalize the Holder condition to the Lp setting to attain yet another
possible definition.

Definition 5.30. For s P p0, 1q, define the Sobolev-Slobodeckij space Ws,p as the space of functions with
finite norm

}u}Ws,p “

ˆˆ
|u|p `

ˆ
|upxq ´ upyq|p

|x ´ y|n`sp dxdy
˙

1
p

.

Define Wk,p for k ą 1 as the sap

Turns out that such spaces are equivalent to Wk,p.

Proposition 5.21. Hk,p “ Wk,p whenever k is a nonnegative integer.

Proof. It suffices to show equivalence of norms. Suppose f P Wk,p. We appeal to the Mikhlin
multiplier theorem, which says that if m is a smooth bounded function s.t. |x|k|∇km| is bounded
for 0 ď k ď n

2 ` 1, then m is an Lp multiplier.

5.9 The Laplacian: A Case Study

One of the most important linear operators in analysis is the Laplacian operator ´∆, which repre-
sents the negative sum of the second partial derivatives of a function. We do a brief, yet in depth
summary of the operator and its spectral and analytic properties.

Since not every function is differentiable, we first want to clearly define the domain of ´∆. Since
we want an inner product structure, for now we consider ´∆ : A Ă L2pRnq Ñ L2pRnq. Natural
choices of domain are A “ CkpRnq, H2pRnq, for k ě 2. The next proposition shows that one of
these is considerably more natural than the others.

Lemma 5.38. For A “ C8
0 pRnq, ´∆ is closable with the closure p´∆, H2pRnqq.

Proof. It suffices to show that for p fn, ´∆ fnq Ñ p0, gq in L2, one has g “ 0. By Fourier transforms,
}g}2 “ limnÑ8 }|ξ|2 pfn}2 and } pfn}2 Ñ 0. But we in fact know that pfn is in the Schwartz space, so
we immediately see that }g}2 “ 0. To see that the closure contains H2, we note that C8

0 is dense in
H2 in the H2-norm. Finally, the fact that H2pRnq is closed as a domain follows from the fact that if
fn Ñ f , ´∆ fn Ñ g P L2, then on the Fourier side, |ξ|2 pfn Ñ |ξ|2 pf “ pg in L2 (as can be easily checked
on compact subsets) and the claim follows.

We now want to show that the Laplacian is self-adjoint. But in fact, our definition of self-adjointness
is quite tricky to demonstrate, so we need a simpler criterion first.

Lemma 5.39 (Criterion for Self-Adjointness). A closed symmetric operator T is self-adjoint iff kerpT˚ ˘

iq “ 0 iff ImpT ˘ iq “ H.
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Proof. Note that a closed operator has closed kernel and image, so the equivalence of the last two
statements is equivalent by the orthogonal decomposition of a Hilbert space. To show DpT˚q Ă

DpTq, let f P DpT˚q, ϕ “ pT˚ ` iq f , and g P DpTq s.t. ϕ “ pT ` iqg. Then, since T˚g “ Tg, we get
pT˚ ` iqp f ´ gq “ 0, i.e. f “ g P DpTq.

Corollary 5.39.1. A closed symmetric operator T is self-adjoint iff σpTq Ă R.

Remark 5.29. The same proof applies on a bounded open subset of Rn.

Proposition 5.22. The Laplace operator is self-adjoint ´∆ : H2pRnq Ă L2pRnq Ñ L2pRnq with essential
spectrum σp´∆q “ σessp´∆q “ r0, 8q.

Proof. Notice that the Laplace operator is the Fourier multiplier of |ξ|2. We borrow from the the-
ory of multiplication operators, which states that the spectrum of a multiplication operator is its
essential range, i.e. the support of the pushforward measure f˚µ, where eigenvalues λ are s.t.
µp f “ λq ą 0. Since the range of |ξ|2 is r0, 8q, so is the spectrum of ´∆, which is easily seen to
be purely continuous. Moreover, since the spectrum is real and the operator is easily seen to be
symmetric, the operator is self-adjoint.

Remark 5.30. This method easily allows us to construct eigenfunctions any (generalized) function sup-
ported on tx : f “ λu is the Fourier transform of an eigenfunction. For instance, we identify the plane
waves eiλx as "eigenfunctions" of the Laplacian with eigenvalues λ.

We can now generalize our approach to the Schrodinger operator ´∆ ` Vpxq : H2pRnq Ă L2pRnq Ñ

L2pRnq. In general V may not be bounded, so the multiplication operator of V might be an un-
bounded operator.

Proposition 5.23. ´∆ ` V essentially self-adjoint on H2 X DpVq for V P L2
loc, V ě 0.

Proof. The same argument as before shows that the operator is closable on C8
c . The same argument

as before shows that H2 is contained in the closure. Finally, the same argument as before shows
that ´∆ ` V is closed on L2.

For multiplication by V to be symmetric, V clearly has to be real-valued. Finally, we get that the
spectrum of the operator depends on pV - namely, σessp´∆ ` Vq is the essential range of ´∆ ` V,
and eigenvalues are values λ where µp|ξ|2 ` pV “ λq ą 0.

Example 5.11. Take V

5.10 Integral Transforms

Of particular interest are various objects defined in terms of integrals. In this section, we present
a few key example and how one may establish properties of these objects using real and complex
analysis techniques.

Definition 5.31. A integral transform is a map of the form

Tp f qpxq “

ˆ
Kpx, yq f pyqdy,

where Kpx, yq is called the kernel of the transform.
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Typically, one wants to establish that a certain integral transform is well-defined, and then that it
is a bounded map between, say, Lp spaces. To establish these kinds of general facts, one needs the
following lemmas.

Lemma 5.40 (Minkowski’s Inequality).
›

›

›

›

ˆ
f p¨, yqdy

›

›

›

›

Lppdxq

ď

ˆ
} f p¨, yq}Lppdxqdy.

Proof. By Hölder,
ˆ „ˆ

f px, yqdy
ȷ

|gpxq|dx “

ˆ ˆ
f px, yq|gpxq|dxdy ď

ˆ
} f p¨, yq}Lppdxq}g}qdy,

so the inequality follows from the fact that }h}p “ sup
´

hkdx for k P Lq, }k}q “ 1.

Example 5.12. (a) The Fourier/Laplace transforms are integral transforms with kernels e´2πiξ¨x, e´ts.

(b) The Poisson integral formula is given by an integral transform with the Poisson kernel Prpθq “
1´r

1´2r cos θ`r2 .

(c) The convolution f ˚ g can be thought of as an integral transform with kernel f or g, respectively.

5.10.1 The Gamma Function

Consider the gamma function defined by

Γpzq “

ˆ 8

0
tz´1e´tdt.

First note that this integral converges for Re z ą 0, since

z
ˆ 8

0
tz´1e´tdt “

ˆ 8

0
tze´tdt “

ˆ 1

0
tze´tdt `

ˆ 8

1
tze´tdt,

where the second term is bounded by
´8

1 tne´tdt ă 8 for n P N, and the first term is clearly
bounded as well. Moreover, one immediately sees that Γp1q “ 1 and zΓpzq “ Γpz ` 1q. We thus
note that Γpzq “ pz ´ 1q!. Now, interestingly, one may attempt to define Γpzq for Re z ď 0 by the
above relation Γpz ´ 1q “

Γpzq

z´1 . Then, Γpzq is well-defined everywhere except at the nonpositive
integers ´n, n ě 0.

Lemma 5.41. Γ : C Ñ C is meromorphic with simple poles at ´n, n ě 0.

Proof. Since we are asked to prove holomorphicity, we use Morera’s theorem. Clearly, Γ is contin-
uous everywhere where it is defined. Moreover, Γ is holomorphic in the right half-plane by Fubini
and Cauchy’s theorem, since

ˆ
∆

ˆ 8

0
tz´1e´tdtdz “

ˆ 8

0
e´t
ˆ

∆
epz´1q ln tdzdt “ 0.

Then, we proceed strip by strip, as it inductively suffices to show Γ is meromorphic in Re z ą ´1.
Any triangle ∆ in Re z ą ´1 not containing 0 may be split into triangles contained in ´1 ă Re z ă 0
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and triangles contained in Re z ą 0 with one of the sides within ϵ of the boundary Re z “ 0. The
contour integrals match on the boundary by continuity, and by Cauchy’s theorem the integral
in the strip and the right-half plane vanish, so by Morera’s theorem, we are done. To show the
singularities at ´n are simple poles, notice that

lim
zÑ´n´

pz ` nqΓpzq “ lim
zÑ´n`

pz ` nqΓpzq “ lim
zÑ´n

Γpz ` n ` 1q

pz ` n ´ 1q...pz ` 1qz
“

p´1qn

n!
,

showing that the poles at ´n are simple.

Proposition 5.24. Γpzq “ 1 ´ 1
z `

ř8
n“1p´1qn

´

1
n!pz`nq

´ 1
n¨n!

¯

Proof. Mittag-Leffler.

Proposition 5.25 (Reflection Principle). ΓpzqΓp1 ´ zq “ π
sin πz for z R Z.

Proof. By Fubini, if u “ s ` t, v “ t
s ,

ΓpzqΓp1 ´ zq “

ˆ 8

0
tz´1e´tdt

ˆ 8

0
s´ze´sds “

ˆ 8

0

ˆ 8

0

ˆ

t
s

˙z

e´ps`tqt´1dtds “

ˆ 8

0

ˆ 8

0

vz´1

1 ` v
e´ududv “

π

sin πz
,

where the latter integral may be evaluated by contour methods. Namely, if 0 ă Re v ă 1, the
integral converges absolutely, so we integrate along a keyhole contour with a branch cut on the
positive real axis. At ´1, the residue is p´1qz´1 “ eπipz´1q “ ´eπiz. On the large and small circles
of radii R, ϵ ą 0, the function is asymptotically like Rz´1

1`R Ñ 0 as R Ñ 8 and ϵz´1

1`ϵ Ñ 0 as ϵ Ñ 0.
Finally, on the other side of the keyhole, the integral is

ˆ 8

0

epz´1qplog |v|`pipθ`2πqq

1 ` v
dv “ ´e2πiz I,

where I is the value of the desired integral. Thus,

Ip1 ´ e2πizq “ ´2πie´πiz ùñ I “
2πi

eπiz ´ e´πiz “
π

sin πz
.

Corollary 5.41.1. Γpzq has no zeros, i.e. 1
Γpzq

is entire.

Corollary 5.41.2. Γp 1
2 q “

?
π.

Proposition 5.26 (Stirling’s Formula). Γpnq „
?

2πnp n
e qn.

5.10.2 Hilbert Transform

Definition 5.32. The Cauchy principal value (p.v.) of a function f with a singularity at a point b or at
8 is defined as

p.v.
ˆ 8

´8

f pxqdx “ lim
ϵÑ0

lim
ηÑ8

ˆ b´ϵ

b´η
f pxqdx `

ˆ b`η

b`ϵ
f pxqdx.

Note that p.v.
´8

´8
f pxqdx “

´8

´8
f pxqdx if f is Lebesgue integrable.
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Definition 5.33. A function f with a well-defined Cauchy principal value over all smooth compactly sup-
ported test functions defines a distribution p.v.p f q : C8

c Ñ R given by

p.v.p f qpϕq “ p.v.
ˆ

R

f pxqϕpxqdx.

Example 5.13. p.v.p 1
x q P S 1, for ˆ ϵ

´ϵ

ϕpxq

x
dx ď 2ϵ}ϕ1}8

and ˆ
|x|ě1

ϕpxq

x
dx ! C}xϕ}8.

Proposition 5.27. For f , ϕ P L1 X CpRq, even, ϕp0q “ 1, we have

p.v.
ˆ

1
x

˙

f “

ˆ
f pxq ´ f p0qϕpxq

x
dx.

Proof. Follows directly from definition.

Theorem 5.42 (Sokhotski-Plemelj Formulae). Let ϕ be a Holder continuous function defined on a closed
curve C Ă C. Then, the Cauchy integral

f pz0q “

ˆ
C

ϕpzq

z ´ z0
dz

defines a holomorphic function f P HpCzCq, with limits f˘ as z Ñ C from inside/outside equal to

f˘pzq “ ˘
1
2

ϕpzq `
1

2πi
p.v.
ˆ

C

f ptq
t ´ z

dt.

In particular, on the real line one has

lim
ϵÑ0

ˆ
f pxq

x ˘ iϵ
dx “ ¯iπ f p0q ` p.v.

ˆ
f pxq

x
.

Proof. Defining ϕ ” 2πi f p0q yields the second claim from the first one.

Definition 5.34. The Hilbert transform of u is defined as

Hpuqpxq “
1
π

p.v.
ˆ 8

´8

upyq

x ´ y
dy :“ u ˚

1
πx

,

where the convolution is taken in the sense of tempered distributions.

Proposition 5.28. pH is Fourier multiplier with symbol ´iχp0,8q.

Proof.

It turns out that the Hilbert transform is a bounded operator on Lp, but the proof technique can be
generalized to a much larger class of singular integral operators of convolution type.
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Definition 5.35. An integral operator of convolution type with kernel K P L1
locpRnq is said to be of

Calderon-Zygmund type if

pK P L8, K P C1pRnzt0uq, |∇Kpxq| ! |x|´pn`1q.

Theorem 5.43. A Calderon-Zygmund type operator is of strong type pp, pq and weak type p1, 1q for 1 ă

p ă 8.

5.11 Ergodic Theory

Several questions on the qualifying exam pertain to ergodic theory. We briefly review the main
facts here.

Definition 5.36. A measure-preserving transformation T : X Ñ X on a probability space is a map
such that µpT´1pAqq “ µpAq for all measurable A.

Definition 5.37. A measure-preserving transformation is said to be ergodic if µpT´1pEq∆Eq “ 0 implies
µpEq “ 0 or µpEq “ 1.

Lemma 5.44. For α P RzQ, tαn mod 1 : n P Nu is dense in r0, 1s.

Proof. By pigeonhole principle, subdividing r0, 1s into N intervals, there are j, k P N such that
pj ´ kqα mod 1 P p´ 1

N , 1
N q. The rest follows by adding this number to itself at most N times.

In fact, there is a much stronger definition for a subset.

Definition 5.38. A sequence in r0, 1s is said to equidistributed if limnÑ8 µpan P rc, dsq “ d ´ c.

Proposition 5.29. A sequence is equidistributed in ra, bs iff limnÑ8
1
N

řN
n“1 f panq “ 1

b´a

´ b
a f pxqdx in

the Riemann integral sense.

Proof. Equidistribution is equivalent to the Riemann integrability of indicator functions. Con-
versely, approximating f by step functions below and above by linearity yields Riemann integra-
bility.

Theorem 5.45 (Weyl’s Equidistribution Theorem). A sequence is equidistributed in r0, 1s iff

lim
NÑ8

1
N

N
ÿ

n“1

e2πian “ 0.

Proof. If a sequence is equidistributed, thiis follows immediately by the Riemann integrability
criterion. Conversely, if the criterion holds, it holds for every trigonometric polynomial, and by
Stone-Weierstrass, for (almost) every continuous function. Then, approximating step functions by
continuous functions as before, the proof concludes.

Example 5.14. Let α P RzQ. Then,

1
N

N
ÿ

n“0

e2πiαn “
1

Np1 ´ e2πiαq
Ñ 0,

so multiples of an irrational number are in fact equidistributed in r0, 1s.
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The importance of ergodic theory are the so-called ergodic theorems, which state that for ergodic
transformations, the average in space and in time are identical.

Theorem 5.46. Let T : X Ñ X be a measure-preserving transformation on a finite measure space and let
f P L1. Define the time and space averages

pf pxq “ lim
nÑ8

1
N

N
ÿ

n“0

f pTkxq, f “
1

µpXq

ˆ
f dµ.

Then pf P L1, and if T is ergodic, pf “ f a.e., with
´

f dµ “
´

pf dµ and pf “ pf ˝ T.

6 Complex Analysis

6.1 Holomorphic Functions

The following are the equivalent definitions of a holomorphic function:

Definition 6.1. (a) A holomorphic function f : U Ñ C is complex differentiable, i.e.

lim
zÑz0

f pzq ´ f pz0q

z ´ z0

exists.

(b) A holomorphic function f : U Ñ C is a complex function given locally by a power series f pzq “
ř8

n“0
f pnqpz0q

n! pz ´ z0qn that that converges normally to f on |z ´ z0| ă R, where R is the smallest
distance to where f is undefined.

(c) A holomorphic function is one satisfying the Cauchy-Riemann (C-R) equations: if f “ u ` iv,
ux “ vy and uy “ ´vx.

To prove this, we first need to prove a fundamental result known as the Cauchy-Goursat theorem.

Theorem 6.1 (Goursat Theorem). If f is complex differentiable in the sense of (a) on an open region U,
for any triangle ∆ contained in U,

´
∆ f pzq “ 0.

Proof. For contradiction, suppose not, i.e |
´

∆ f pzqdz| ą ϵ. Iteratively subdivide the triangle into
subtriangles, and by pigeonhole principle, pick a point z˚ in a sequence of triangles where |

´
∆n

f pzqdz| ě
ϵ

4n . But since each triangle has half the diameter and perimeter of the previous one,
ˇ

ˇ

ˇ

ˇ

ˆ
f pzqdz ´ p f pz˚q ` f 1pz˚qpz ´ z˚qqdz

ˇ

ˇ

ˇ

ˇ

ď ϵ1

ˆ
|z ´ z˚|dz ď ϵ1diamp∆nq|∆n| “

ϵ1diamp∆0q|∆0|

4n ,

which is a contradiction for small enough ϵ1.

Corollary 6.1.1. Approximating an arbitrary simple curve by polygons, which are further subdivided into
triangles, and approximating null homotopic curves by simple closed curves implies Cauchy’s Theorem:
for f : U Ñ C complex differentiable and γ a closed C1 curve inside U homotopic to a point,

ˆ
γ

f pzqdz “ 0.
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Theorem 6.2. (Cauchy’s Integral Formula and Estimates) If f is holomorphic on U and γ is a circle of
radius R in U,

f pnqpz0q “
n!

2πi

˛
γ

f pzq

pz ´ z0qn`1 dz

and
| f pnqpz0q| ď

n!M
Rn .

Proof. WLOG, suppose γ is a circle. For n “ 0,
ˇ

ˇ

ˇ

ˇ

˛
γ

f pzq ´ f pz0q ` f pz0q

z ´ z0
dz ´ 2πi f pz0q

ˇ

ˇ

ˇ

ˇ

Ñ 0,

as the left part is bounded (since f is differentiable) and the right part can be evaluate to be
2πi f pz0q. Then, by the geometric series formula

f pwq “
1

2πi

˛
γ

8
ÿ

n“0

f pzq

pz ´ z0qn`1 pw ´ z0qndz “

8
ÿ

n“0

pw ´ z0qn
˛

γ

f pzq

pz ´ z0qn`1 dz,

where the change in integral and sum is justified by taking a small enough circle γ.

Corollary 6.2.1. This argument shows that a holomorphic function f has a power series expansion that
is locally uniformly convergent in any circle that the singularities of f . Moreover, any formal power series
is a sequence of holomorphic functions that converges locally uniformly, and thus defines a holomorphic
function on its radius of convergence R “ 1

lim sup |an|
1
n

. This, along with a simple calculation showing

that the C-R equations are equivalent to complex differentiability, shows that the three definitions of a
holomorphic function are equivalent.

Remark 6.1. Introducing the Wirtinger derivatives

Bz “
1
2

pBx ´ iByq, Bz “
1
2

pBx ` iByq,

C-R implies that f is holomorphic iff Bz f “ 0, and f 1pzq “ Bz f pzq.

Remark 6.2. On the boundary of the disk of convergence, the power series for a holomorphic function f can
converge in any way possible - absolutely, conditionally but not absolutely, or it may diverge at any subset
of BD. For example,

(a) 1
1´z “

ř8
n“0 zn diverges everywhere on the boundary.

(b) ´ logp1 ´ zq “
ř8

n“0
zn

n converges everywhere conditionally except at z “ 1.

(c)
ř8

n“1
zn

n2 converges everywhere on the boundary absolutely.

If f : U Ñ C is holomorphic, we write f P HpUq. One can check that a given function is holomor-
phic using Morera’s theorem:

Theorem 6.3 (Morera’s Theorem). If f : U Ñ C is continuous and
´

∆ f pzqdz “ 0 for every triangle
∆ Ă U, then f P HpUq.
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Proof. Define Fpz0q “
´

γ f pzqdz, where γ starts at a fixed point a and ends at z0. The conditions,
along with a polygonal approximation argument, imply that F is complex differentiable and so is
holomorphic. By the fundamental theorem of calculus, since F1 “ f and analyticity of F, it follows
that f is holomorphic.

Corollary 6.3.1. The proof shows that a holomorphic function f on any domain U has an antiderivative
F iff

¸
γ f “ 0. In particular, every holomorphic function locally has an antiderivative. The necessity of

the zero integral condition follows from the fact that by the Fundamental Theorem of Calculus,
¸

f pzq “

Fpz0q ´ Fpz0q “ 0.

The following are main results and theorems that frequently appear on the analysis qual:

Theorem 6.4. (Maximum, Minimum Modulus and Mean Value Formulae) If f is holomorphic on U and
γ is a circle of radius R in U,

f pz0q “
1

2πi

˛
γ

f pzq

z ´ z0
dz “

1
2π

ˆ 2π

0
f pz0 ` Reiθqdθ “

1
πR2

‹
Bp0,Rq

f pzqdz “
1

πR2

ˆ 2π

0

ˆ R

0
f preiθqrdrdθ.

If | f | attains a (local) maximum on U, f is constant. If | f | is bounded below on U by a positive constant,
then if | f | attains a (local) minimum on U, f is constant. Moreover, if f is continuous on BU, | f | attains
its maximum and (if f has no zeros in U) minimum on BU.

Proof. Mean value formulae follow immediately from Cauchy’s integral formula, and directly im-
ply the maximum and minimum principles.

When discussing convergence of complex functions, the most natural setting is that of locally
uniform convergence:

Definition 6.2. A sequence fn : U Ñ C converges normally to f : U Ñ C if fn Ñ f uniformly on
compact subsets of U.

Proposition 6.1. If fn P HpUq and fn Ñ f normally, f P HpUq and f pkq
n Ñ f pkq normally.

Proof. The first part follows from Morera’s theorem. The second part follows from Cauchy’s Inte-
gral Formula.

The following is a fundamental characterization of holomorphic functions.

Theorem 6.5 (Open Mapping). Every nonconstant holomorphic map is open, i.e. the image of an open
set is open.

6.2 Exercises

If f P HpDq has a pole at z “ 1, then the Taylor series for f diverges everywhere on the boundary.

Proof. If not,
ř

anzn “ c for some |z| “ 1, so an Ñ 0, so considering the series bn “ an ´ an“1, we see
that

ř

bnzn “ p1 ´ zq
ř

anzn “ p1 ´ zq f pzq. But as z Ñ 1, by Abel’s theorem the former converges
to 0 and the latter cannot converge to 0 because of the pole, which is a contradiction.
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Fall 2014 Problem 9 Let Ω Ă C be an open connected set. If fn is a sequence of injective
holomorphic functions on Ω that converges normally to f , then, if f is nonconstant, f is injective.

Proof. Note that f is injective iff f 1 does not vanish on U. In particular, since fn converges locally
uniformly to f , f 1

n also converges locally uniformly to f 1. Suppose f 1 is not injective. Then, f 1pz0q “

0 for some z0 P U. In particular, by the argument principle, over a sufficiently small circle of radius
γ around z0 on which f 1 does not vanish, 1

2πi

´
γ

f 2

f 1 “ 1, but 1
2πi

´
γ

f 2
n

f 1
n

“ 0 for all n. But this is a
contradiction, since | f 1| is bounded on γ, so for ϵ ă infγ | f 1|, for sufficiently large n one has that
f 2
n

f 1
n

Ñ
f 2

f 1 uniformly, contradicting the difference in the integral values.

Spring 2014 Problem 9 Prove that if fn Ñ f normally on an open connected set Ω Ă C, fn, f
holomorphic, fnpzq “ 0, then either f is either identically zero or vanishes nowhere.

Proof. Essentially a special case of the last problem.

6.3 Zeros and Poles

Lemma 6.6 (Isolated Zeros). The zeros of a nonzero holomorphic function have finite order and are iso-
lated.

Proof. Since a holomorphic function is defined locally by a power series, f pzq “ zkgpzq where g is
analytic and gp0q “ 0. This shows that the zero has finite order and is isolated.

Corollary 6.6.1 (Identity Lemma). If f , g P HpUq agree on a set with a limit point in U, f “ g.

Definition 6.3 (Poles). A complex function with isolated singularities has three types of singularities:

(a) A singularity z0 is removable if limzÑz0 f pzq “ f pz0q.

(b) A singuarity z0 is a pole of order k if limzÑz0pz ´ z0qn| f pzq| “ 8 for 0 ď n ď k ´ 1 but not for
n “ k.

(c) An essential singularity if neither is true.

Lemma 6.7 (Riemann’s Theorem on Removable Singularities). If z0 is an isolated singularity and f
is bounded in a neighborhood of z0, z0 is a removable singularity.

Proof. Note that f pzqpz ´ z0q2 is holomorphic at z0, since it has zero derivative. Thus, f pzqpz ´

z0q2 “ hpzq, where hpz0q “ h1pz0q “ 0. We thus have that f pzq “
hpzq

pz´z0q2 “ a2 ` a3pz ´ z0q ` ...

Definition 6.4. A meromorphic function f : U Ñ C is a function holomorphic outside a discrete (that
is, closed countable) set of poles.

Lemma 6.8. Every meromorphic function on C is a ratio of two entire functions.

Proof. Given a meromorphic function f with poles an, by Weierstrass’s Theorem, there exists a
function g that has zeros an. Then, f g “ h is holomorphic, so h “

f
g .
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Here are three important results that explain the behavior of meromorphic functions near singu-
larities:

(a) Little Picard’s Theorem: The image of an entire function misses at most one point of C.

(b) Casorati-Weierstrass: The image of a function in a neighborhood of an essential singularity
is dense in C.

(c) Great Picard’s Theorem: In a neighborhood of an essential singularity, a holomorphic func-
tion takes on all except at most one value of C infinitely many times.

(d) Generalized Great Picard: Any holomorphic map Mztwu Ñ CP attains all except at most
two values of CP infinitely many times in any neighborhood of w.

Some important corollaries follow when considering the singularity of a function at 8.

Proposition 6.2. If f is entire and has a removable singularity at 8, then f is constant. If f has a pole at
8, then it is a polynomial.

Proof. The first claim follows immediately from Liouville’s theorem. For the second claim, we see
that f extends to a meromorphic function on CP, so it is rational and has no poles in C. Thus, it is
a polynomial.

Remark 6.3. If f is entire and a polynomial, then by the Fundamental Theorem of Algebra it attains every
value. If not, then it has an essential singularity at 8, so since f never attains the value 8 of CPzt8u, we
see that the generalized Great Picard theorem implies the Little Picard Theorem.

6.4 Infinite Products

Recall that by the Weierstrass M-Test, the power series for a holomorphic function converges nor-
mally on the disk of convergence. In latter sections, we are interested in considering the conver-
gence of infinite sums and products for meromorphic functions.

Definition 6.5. Given a countable subset X “ tanu Ă C and a branch of logarithm with a branch cut that
avoids X, we say

ś8
n“1 an converges iff

ř8
n“1 logpanq converges. If the sum converges to ´8, the infinite

product is said to diverge to 0.

Remark 6.4. Note that if an ě 0 for all n, since
ÿ

an ď
ź

p1 ` anq ď e
ř

an ,

then
ś8

n“1p1 ` anq converges iff
ř8

n“1 an converges.

Corollary 6.8.1. A product
ś8

n“1p1 ` anq is said to converge absolutely if
ś8

n“1p1 ` |an|q converges.
Then, the remark implies that

ř

n an converges absolutely if and only if
ś8

n“1p1 ` anq converges absolutely.

Lemma 6.9. The Cauchy criterion for convergence of products is as follows: the product converges if for
any ϵ there exists a K s.t. |

śm
n ak ´ 1| ă ϵ for n, m ě K.

Proposition 6.3. If a product converges absolutely, then it converges. In particular, if an ě 0,
ś

p1 ´ anq

converges iff
ř

an converges.
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Proof. The first statement follows from the Cauchy criterion and the inequality
ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

n
p1 ` akq ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

m
ź

n
p1 ` |ak|q ´ 1.

Then, if
ř

an converges,
ś

p1 ´ anq converges absolutely and therefore converges. Conversely, if
ř

an diverges and
ś

p1 ´ anq converges, an Ñ 0 so since p1 ` anqp1 ´ anq ď 1 ´ a2
n ě 0, we get that

ś

p1 ´ anqp1 ` anq ď 1, so
ś

p1 ´ anq Ñ 0, which is a contradiction.

Remark 6.5. The examples an “ 1
b

t n
2 u

(where the product diverges to 0, but the sum converges) and

a2n “
?

n`1?
n , a2n`1 “

?
n

?
n`1

(where the product converges, but the sum diverges) show that when we have
both negative and positive terms, the convergence of

ś

p1 ` anq and
ř

an is unrelated.

Corollary 6.9.1. An infinite product
ś8

n“1p1 ` fnq of holomorphic functions converges to a holomorphic
function if

ř8
n“1 | fn| converges.

6.5 Weierstrass, Hadamard, Laurent, Mittag-Leffler, Jensen

We are often times interested in seris/product expansions for holomorphic/meromorphic func-
tions. Their existence is provided through the following theorems:

Theorem 6.10 (Laurent Series). There exists a unique annulus at z0 on which a function f with an
isolated singularity at z0 has a Laurent series of the form

f pzq “

8
ÿ

n“´8

anpz ´ z0qn,

where an “ 1
2πi

¸ f pzq

pz´z0qn`1 dz that converges normally on the annulus. If infinitely many negative terms of
the Laurent series are nonzero, f has an essential singularity at z0. Otherwise, if a´m is the first nonzero
coefficient, f has a pole of order m, and if the expansion has no negative terms, f has a removable singularity.
Moreover, R˘ “ 1

lim sup |a˘n|
1
n

are the inner and outer radii of the annulus.
ř´1

´8 anzn is called the principal

part of f . Moreover, if if f is a holomorphic function in an annulus, then its Laurent series converges
normally to f on that annulus.

Proof. First, consider a formal Laurent series with R˘ defined as in the proof. Then, by the Weier-
strass M-Test, the partial sums converge locally uniformly and thus define a holomorphic function
on the annulus R´ ă |z ´ z0| ă R`. Conversely, if f is a holomorphic function in the annulus, one
applies Cauchy’s formula on the inner part of the annulus and the upper part of the annulus, on
the intersection, f is given by its Laurent series, with the partial sums converging normally.

Example 6.1. Consider the function e
1
z ´ 1

z´2 . This function has two Laurent series - one in the annulus
0 ă |z| ă 2, given by

8
ÿ

n“0

z´n

n! `
1
2

8
ÿ

n“0

´ z
2

¯n
,

and one in the annulus |z| ą 2, given by the Laurent series for ez ´ z
1´2z at 0, which is

8
ÿ

n“0

z´n

n!
´ z

8
ÿ

n“0

p2zqn.
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Arguably the most fundamental result regarding meromorphic functions is that of the residue
theorem:

Definition 6.6. Let f be meromorphic, and z0 be a singularity of f . Resp f , z0q “ a´1 “
´

γ f pzqdz is called
the residue of f at z0, where γ is a curve around z0 with no other singularities in the interior. If f has a
removable singularity, the residue is 0, and if it is a pole of order n, the residue may be computed as

Resp f , z0q “ lim
zÑz0

1
pn ´ 1q!

dn´1

dzn´1 pz ´ z0qn f pzq.

Theorem 6.11 (Residue Theorem). Let f be meromorphic. Then, for any simple contour γ oriented
counterclockwise, ˆ

γ
f pzqdz “ 2π

ÿ

a
Resp f , aq,

where a ranges over all singularities of f inside γ.

Definition 6.7. A holomorphic function f is said to be of exponential order n if n is the infimum of a
such that f pzq ! e|z|n

.

Theorem 6.12 (Weierstrass/Hadamard Factorization Theorems). If f is an entire function with nonzero
zeros an and a zero of order m at 0, there exists an entire function g and a sequence of integers n such that

f pzq “ zmegpzq

8
ź

n“1

Epn p
z
an

q,

where
Enpzq “ p1 ´ zqe

řn
i“1

zn
n ,

where the convergence of the product is normal on C. Moreover, if f is of order n, then it suffices to take
gpzq to be a polynomial of degree n and pk “ p, where p is the smallest integer such that

8
ÿ

n“1

1
|an|p`1

converges.

Remark 6.6. Note that the convergence of the product is guaranteed since |Epp z
an

q ´ 1| ! | z
an

|n`1.

Theorem 6.13 (Mittag-Leffler Theorem). Any meromorphic function f : U Ñ C with a set of singular-
ities E without a limit point in U can be written as f “ g ` h, where g is holomorphic on U and for any
a P E, h ´ papzq has a removable singularity at a, where papzq is the principal part of h at a. In particular,
every function has the normally convergent expansion

f pzq “ hpzq `

8
ÿ

n“1

pan pzq ` gnpzq,

where gnpzq are polynomials chosen to make the sum converge. Particularly, if f only has simple poles, is
defined at 0, and is uniformly bounded on a sequence of circles with radii tending to 8, then

f pzq “ f p0q `

8
ÿ

n“1

bn

z ´ an
`

bn

an
,

where bn is the residue of f at an.
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Example 6.2. (a) sin z is a entire function of order 1 with a zero of order 1 at 0. Since the zeros are ˘nπ,
and thus are asymptotic to the harmonic series, clearly p “ 1 suffices. Thus, by Hadamard,

sin z “ zeaz`b
8

ź

n“1

p1 ´
z

nπ
qe

z
nπ p1 `

z
nπ

qe´ z
nπ “ zeaz`b

8
ź

n“1

p1 ´
z2

n2π2 q,

and using the fact that sin z is odd and dividing by z and substituting 0 yields a “ b “ 0, i.e.

sin z “ z
8

ź

n“1

ˆ

1 ´
z2

nπ2

˙

.

(b) By the same exact logic,

cos z “ eaz`b
8

ź

n“1

˜

1 ´
z2

pn ´ 1
2 q2π2

¸

,

where plugging in 0 and using the fact that cos z is even yields

cos z “

8
ź

n“1

˜

1 ´
z2

pn ´ 1
2 q2π2

¸

“

8
ź

n“0

ˆ

1 ´
4z2

p2n ` 1q2π2

˙

.

(c) ez ´ eiz is an entire function of order 1. It has zeros whenever ezp1´iq “ 0, i.e. z “ 2πn
1´i . Then,

ez ´ eiz “ zeaz`b
8

ź

n“1

˜

1 ´
z2

p 2πn
1´i q2

¸

,

and by standard techniques we conclude that b “ lnp1 ´ iq “
?

2 ´ π
4 and since ez´az ´ eiz´az is

odd, ´zp1 ´ aq “ zpi ´ aq, i.e. a ´ 1 “ i ´ a ùñ a “ 1 ` i, so

ez ´ eiz “ zep1`iqz`p1´iq
8

ź

n“1

˜

1 ´
z2

p 2πn
1´i q2

¸

.

Example 6.3. (a) tan z has simple poles at z “ πp˘n ˘ 1
2 q for n ě 0 and satisfies the uniform bound-

edness condition, so by Mittag-Leffler, with residue ´1 at every pole, one has

tan z “

8
ÿ

n“0

´
1

z ´ πpn ` 1
2 q

´
1

z ´ πp´n ´ 1
2 q

“

8
ÿ

n“0

8z
π2p2n ` 1q2 ´ 4z2 .

Alternatively, one may use the Hadamard factorization for cos z and the fact that tan z is the loga-
rithmic derivative to conclude

´ tan z “

8
ÿ

n“0

´8z
p2n ` 1q2π2 ´ 4z2 ,

which yields the same expansion.

(b) Doing term by term differentiation of the above series yields sec2 z “
ř8

n“0
8pπ2p2n`1q2`4z2q

pπ2p2n`1q2´4z2q2 .
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6.6 Montel and Runge

We now define a version of compactness for families holomorphic functions.

Definition 6.8. A family F Ă HpUq is said to be normal if every sequence in F has a uniformly conver-
gent subsequence.

Montel’s theorem provides a simple description of normal families:

Theorem 6.14 (Montel’s Theorem). A family F Ă HpUq is normal iff it is locally uniformly bounded.

Proof. The forward direction is essentially an application of Arzela-Ascoli, using the bounds on
the derivative f 1pzq from f pzq. The converse follows since precompact sets are bounded.

An interesting parallel to Montel’s Theorem is the following statement:

Theorem 6.15 (Fundamental Normality Test). A family F Ă HpUq of functions all omitting the same
two values a, b P C is normal.

Finally, we want to provide an analogue of such convergence for meromorphic functions, pro-
vided in the form of Runge’s theorem:

Theorem 6.16 (Runge’s Theorem). If f P HpUq and A is a set with at least one value from each connected
component of CzK, where K Ă U is compact, then there exists a sequence of rational functions with poles
in A that converge uniformly to f on K.

6.7 Automorphisms of Riemann Surfaces

Recall the construction of the Riemann sphere as CP “ C Y t8u. We are interested in studying
the structure of simply-connected Riemann surfaces (complex manifolds). This is made extremely
easy with the following theorem:

Theorem 6.17 (Uniformization Theorem). Every simply-connected Riemann surface is conformally
equivalent to CP, C, or D.

Thus, it suffices to understand holomorphic/meromorphic maps and automorphism between
each of these three Riemann surfaces. We first focus on CP.

Definition 6.9. A Möbius transformation is a map of the form

f pzq “
az ` b
cz ` d

,

satisfying the following properties:

(a) The Möbius transformations form a group isomorphic to PGL2pCq according to

a ` bi
c ` di

ðñ

„

a b
c d

ȷ

.

(b) A Möbius transformation is uniquely defined by three points.

(c) If f pzq “ az`b
cz`d , f ´1pzq “ dz´b

´cz`a

Proposition 6.4. Let f : CP Ñ CP be meromorphic. Then, f is a rational function.
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Proof. Since CP is compact, any nonconstant f has finitely many zeros. Moreover, f has finitely
many singularities, and each singularity is a pole (otherwise f is not meromorphic on C, i.e. holo-
morphic on CP). Multiplying by the poles and dividing by the zeros yields a bounded function
on C, so by Liouville it is constant. Thus, f is rational.

Corollary 6.17.1. All diffeomorphisms (that is, complex automorphisms) of CP are Möbius transforma-
tions.

Proof. We know that f has exactly one zero and one pole and is rational.

Proposition 6.5. The diffeomorphisms of C are linear functions.

Proof. Note that by Casorati-Weierstrass, f does not have an essential singularity at 8, since the
image of f in a neighborhood of 8 is not dense in C by the open mapping theorem. Thus, f is a
polynomial. The only injective polynomials are linear functions. The result then follows.

Proposition 6.6. The automorphisms of D are the Blaschke factors f pzq “ eiθ z´a
1´az .

Proof. Suppose f p0q “ 0. Applying the Schwarz lemma to f , f ´1, we get that | f 1| “ 1, so f pzq “

eiθz. Otherwise, map the zero a of f to 0 using a Blaschke product.

Remark 6.7. Blaschke factors are very special because they replace a zero at 1
a with a pole at a, and also have

magnitude 1 on the unit circle, so multiplying by them does not change the magnitude of the unit circle.

Proposition 6.7. There are no holomorphic maps CP Ñ C, C Ñ D.

Proof. CP is compact and C is not. The latter is the statement of Liouville’s theorem.

6.8 Jensen’s Formula and Bounds on Zeros

Since complex functions are so well-behaved, it is natural to ask if one may obtain certain bounds
on their growth as it relates to the number of zeros. One first needs the following absolutely
fundamental lemma.

Lemma 6.18 (Schwarz Lemma). Let f : D Ñ D be holomorphic and f p0q “ 0. Then, | f pzq| ď |z|, and
| f 1p0q| ď 1. If equality holds in either case, f pzq “ eiθz.

Proof. Define gpzq “
f pzq

z . Then, lim|z|Ñ1 |gpzq| “ 1, so by the maximum principle on t|z| “ ru

and sending r Ñ 1, we can conclude that |gpzq| ď 1, i.e. | f pzq| ď |z| and | f 1p0q| “ |gp0q| ď 1. If
equality holds, then by open mapping theorem/maximum principle, f has constant magnitude
and so f pzq “ eiθz.

Lemma 6.19 (Schwarz-Pick Lemma). If f : D Ñ D is holomorphic,
ˇ

ˇ

ˇ

ˇ

ˇ

f pz1q ´ f pz2q

1 ´ f pz1q f pz2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

z1 ´ z2

1 ´ z1z2

ˇ

ˇ

ˇ

ˇ

,

with equality holding iff f is a Blaschke factor, and

| f 1pzq|2

1 ´ | f pzq|2
ď

1
1 ´ |z|2

.
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Proof. Consider the Blaschke factors τ2, τ2 sending 0 Ñ z1, 0 Ñ f pz1q, respectively. Then, τ2 ˝ f ˝

τ´1
1 pzq satisfies the assumptions of the Schwarz lemma, so replacing z Ñ τpz2q yields the desired

inequality, and sending z1 Ñ z2 yields the latter inequality.

Definition 6.10. The pseudohyperbolic metric on D is defined as ρpz, wq “

ˇ

ˇ

ˇ

z´w
1´zw

ˇ

ˇ

ˇ
. The Schwarz-Pick

lemma implies that with respect to this metric, analytic functions on D are Lipschitz.

Theorem 6.20 (Borel-Caratheodory). An entire function is bounded by its real part according to

sup
|z|ďr

| f | ď
2r

R ´ r
M `

R ` r
R ´ r

f p0q

for M “ sup
|z|ďR Re f .

Proof. If f is nonconstant, the idea is to apply the Schwarz lemma. Suppose f p0q “ 0, and note
that since Re f is a harmonic nonconstant function, M ą 0. Then, the image of f lies in the shifted
half-plane Re z ď M, which can be mapped to the disk of radius R using

ϕpzq “
Rz

z ´ 2M
.

Thus, Schwarz lemma yields that for |z| ď r,
ˇ

ˇ

ˇ

ˇ

R f pzq

f pzq ´ 2M

ˇ

ˇ

ˇ

ˇ

ď r ùñ sup
|z|ďr

| f | ď
2r

R ´ r
M.

In the general case, just apply the proof to f pzq ´ f p0q.

One of the most important functions is the complex logarithm, defined as log z “ log |z| ` iArgpzq.
The issue is that the argument of a complex number is not well-defined up to multiples of 2π,
requiring a branch cut where log z is undefined. The standard choice is to make the branch cut at
the negative x-axis and let Argpzq P p´π, πq, which corresponds to the Log z. However, one may
shift the branch cut as is necessary, as long as the domain does not contain a curve around 0.

The key theorem that relates the zeros of a holomorphic function to its growth is known as Jensen’s
formula:

Theorem 6.21 (Jensen’s formula). For a meromorphic function f on U and γ a circle of radius R centered
at z0 and contained in U,

log | f pz0q| “
1

2π

ˆ
γ

log | f pzq|dz `
ÿ

k

log
|ak ´ z0|

R
´

ÿ

k

log
|bk ´ z0|

R
,

where ak and bk are the zeros and poles of f in the interior of γ, respectively.

Proof. By scaling and shifting, one may assume that γ “ BD, i.e. z0 “ 0, R “ 1. Multiplying f by
appropriate Blaschke factors makes f nonzero holomorphic on D at no cost on the right, since the
Blaschke factors have magnitude 1 on the boundary and log 1 “ 0, and a cost of log |ρ| on the left
(since the Blaschke product is evaluated at 0). Thus, the problem reduces to showing

1
2π

ˆ
BD

log | f |dz “ logp| f p0q|q,
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which follows since log | f | “ Re log f is a harmonic function and thus satisfies the mean value
property.

Corollary 6.21.1. The most useful version of Jensen’s formula is that for holomorphic functions, which
states

1
2π

ˆ
γ

log | f pzq|dz “ log | f pz0q| `
ÿ

k

log
R

|ak ´ z0|
.

Crucially, this formula relates the number of zeros to the growth of an entire function.

Proposition 6.8. If f is entire of order A, if N is the number of zeros of f in Bp0, Rq, then N ! RA.

Proof. Consider Jensen’s formula applied to a circle of radius 2R. Then,

1
2π

ˆ
p2RqAdz ě log | f p0q| `

ÿ

k

log
2R
|ak|

.

For every zero in Bp0, Rq, the term in the sum is at least log 2, and for all other zeros the term is
nonnegative, so

N log 2 ! RA.

Example 6.4. There is no nonzero entire f such that f ! e|z| and f pn
1
3 q “ 0 for all n ě 0. This is because

N " R3 " R1, and 1 is the order of f .

6.9 Phragmen-Lindelof

Often times, one wants to bound a holomorphic function defined on some unbounded region in
the complex plane. For bounded regions, one may appeal to the maximum modulus principle, and
for unbounded ones, the argument of the Hadamard three-lines lemma motivates the following
set of propositions.

Proposition 6.9 (Phragmen-Lindelof). If f ! ee
π

b´a | Im z|

is holomorphic in the strip a ă Re z ă b,
bounded by M on the edges of the strip, then it is bounded by M everywhere, i.e. f satisfies the maximum
principle.

Proof. Multiplying by e´ez
, using the maximum modulus principle, and sending ϵ Ñ 0 concludes

the proof.

Corollary 6.21.2 (Phragmen-Lindelof for Sectors). If f is holomorphic in the sector α ď θ ď β and of
exponential type at most π

α´β , then f satisfies the maximum principle.

Proof. Apply Phragmen-Lindelof to f peizq.
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6.10 Injective, Proper Functions, and Blaschke Products

Proposition 6.10. If f : U Ñ V is holomorphic injective, then f 1 does not vanish on U.

Proof. WLOG, suppose z0 “ 0. Then, write f pzq “ akzk ` ... “ zkhpzq for some analytic function h
such that hp0q “ 0. This implies that locally, h has a holomorphic k-th root, so f pzq “ pzgpzqqk. But
the image of zgpzq contains a neighborhood of zero by the Open Mapping Theorem, so there exist
two distinct angles θ1, θ2 such that gpz1q “ reiθ1 , gpz2q “ reiθ2 , and z1gpz1qk “ z2gpz2qk contradicting
the injectivity of f .

The Inverse Function Theorem guarantees that if f : U Ñ V is holomorphic and bijective, then the
derivative of f ´1 satisfies C-R and so f is conformal.

To analyze the zeros of holormorphic functions, we have two very powerful tools:

Theorem 6.22 (Argument Principle). For f meromorphic in U and γ a simple closed curve, the value of
1

2πi

¸
γ

f 1pzq

f pzq
dz “ number of zeros - number of poles inside U.

Theorem 6.23 (Rouche’s Theorem). If f , g P HpUq X CpUq and and |g| ă | f | on BU, f and f ` g have
the same number of zeros in U.

Definition 6.11. A map f : U Ñ V is proper if the preimage of any compact set in V is compact in U.

Theorem 6.24. (The Fundamental Theorem of Blaschke Products)

(a) A map f : D Ñ D is proper iff it is a finite Blaschke product.

(b) Given a sequence an P D such that
ř8

n“1p1 ´ |an|q ă 8, there exists a function f “
ś8

n“1
|an|

an

z´an
1´anz P

HpDq that vanishes precisely on tanu.

Proof. Suppose f is proper. Then, f ´1p0q is finite, so f has finitely many zeros. Moreover, f ´1pBp0, rqq

for r ă 1 is compact, and so avoids the boundary of the D. Thus, lim|z|Ñ1 | f pzq| “ 1. Divide by
the Blaschke factors corresponding to those zeros to obtain a map rf that does not vanish on the
unit disk and extends to a function of constant modulus on the boundary. The image of a func-
tion of constant modulus is a subset of a circle, so by the Open Mapping Theorem, the function is
constant. Thus,

f “ eiθ
n

ź

i“0

Bi,

where Bi are the Blaschke factors of f . Conversely, if f is of the above form, for any compact set
K Ă Bp0, rq, r ă 1, f ´1pKq avoids the boundary, and so is closed and bounded, i.e. compact.
Finally, for a function f P HpDq with zeros tanu, define the partial products as above. The

6.11 Harmonic Functions and Laplace’s Equation

Definition 6.12. Let U Ă Rn be open. Then, f : U Ñ C is harmonic if ∆u “ 0 on U.

Lemma 6.25. If f is holomorphic on U, then Rep f q, Imp f q are harmonic on U. Conversely, on a simply
connected subset of C, every harmonic function is the real/complex part of a holomorphic function, unique
up to a constant.
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Proof. One direction follows easily from C-R. Conversely, for u harmonic, define f “ ux ´ iuy.
Then, f has a primitive Fpzq “ f pz0q `

´ z
z0

f pζqdζ for some z0 P U. If Upzq “ Re F, F1pzq “ Ux ´

iUy “ ux ´ iuy, so Upzq “ upzq for all z.

Remark 6.8. This does not necessarily hold for non-simply connected regions. As a counterexample,
log

a

x2 ` y2 is harmonic in the punctured plane but is not a real part of an analytic function. If it did,
then x?

x2`y2
´ i y?

x2`y2
would have a primitive. But this function is not path-independent and therefore

not conservative.

Corollary 6.25.1. If f is nonzero holomorphic on a simply connected open U, log | f | exists and is harmonic
on U.

Proof. Take the real part of the antiderivative of f 1

f .

Theorem 6.26 (Analytic Continuation). If f : U Ñ C is holomorphic and U Ă V, then, there exists an
analytic continuation of f

Harmonic functions enjoy most of the same properties as holomorphic functions.

Theorem 6.27. (a) A function f : U Ñ R is harmonic iff for any ball Bpa, rq Ă U,

1
µpBpa, rqq

ˆ
Bpa,rq

f pxqdx “
1

µpBBpa, rqq

ˆ
BBpa,rq

f pxqdx “ f paq.

(b) A harmonic function on Rn bounded above or below is constant.

(c) (Strong Maximum Principle) If U is connected and f : U Ñ R achieves a local maximum or
minimum, then f is constant.

(d) (Weak Maximum Principle) If U is bounded, connected, and f is harmonic and continuous up to U,
f achieves its maximum and minimum on BU.

(e) (Identity Theorem) Two harmonic functions f : U Ñ R that agree on V Ă U open agree on U.

(f) A harmonic function is smooth.

Proof. Note that it suffices to prove the mean value property for spheres. WLOG, suppose a “ 0.
Then, by the divergence theorem, we compute

d
dr

„

1
µpBBp0, rqq

ˆ
BBp0,rq

f pxqdx
ȷ

“
1

µpBp0, 1qq

ˆ
BBp0,1q

∇ f prxq ¨ xdx “
1

µpBp0, 1qq

ˆ
Bp0,1q

∆ f prxqdx “ 0

if f is harmonic. Conversely, the mean value property implies that ∆ f vanishes on arbitrarily
small balls, and so ∆ f “ 0. Since at r “ 0, this function approaches f paq, the claim follows.
WLOG suppose a harmonic function is nonnegative. Then, for x, y P U, pick R1, R2 such that
R2 “ R1 ` 2|x ´ y|, i.e. so that Bpx, r1q Ă Bpy, r2q. Then,

f pxq “
1

µpBpx, R1qq

ˆ
Bpx,R1q

f ptqdt ď
µpBpy, R2qq

µpBpx, R1qq

1
µpBpy, R2qq

ˆ
Bpy,R2q

f ptqdt “ f pyq,
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and as R1 Ñ 8, the ratio of the volumes tends to 1, i.e. f pxq ď f pyq. By symmetry, f is constant.
The identity principle can be proven by showing that the set of points where an analytic func-
tion locally vanishes is both closed and open. If U is connected and f achieves its local maxi-
mum/minimum inside U, then f is locally constant, so by the identity principle, it is globally
constant.

Remark 6.9. Note that the mean value formula immediately implies that a normally convergent sequence
of harmonic functions is harmonic, and by the monotone convergence theorem, that a decreasing sequence
of harmonic functions is harmonic.

Remark 6.10. Note that the maximum of two harmonic functions is not necessarily harmonic.

6.11.1 Subharmonic Functions

If we relax the equality in the mean value formula to an inequality, we obtain so-called subhar-
monic functions.

Definition 6.13. TFAE for an upper semi-continuous f : U Ñ R Y t´8u:

(a) For all Bpa, rq Ă U,

f paq ď
1

µpBpa, rqq

ˆ
Bpa,rq

f pxqdx.

(b) For all Bpa, rq Ă U,

f paq ď
1

µpBBpa, rqq

ˆ
BBpa,rq

f pxqdx.

(c) If U is a bounded open set, for every harmonic h on V Ă U continuous up to the boundary one has
f |BV ď h|BV , then f ď h in V.

(d) If f is C2, ∆ f ě 0 in U.

If any of these hold, f is called subharmonic. The negative of a subharmonic function is called a superhar-
monic function.

Proof. For (b) ùñ (c), suppose f |BV ď h|BV but f paq ą hpaq for some harmonic function h and
a P B. Then, the set where f ´ h is positive is open and nonempty. Suppose x is the maximum of
f ´ h. Then, the sub-mean value property implies that f ´ h is constant in a neighborhood of x,
implying that the set where f ´ h achieves its maximum is open and closed, i.e. f ´ h is constant,
which is a contradiction. For (c) ùñ (b), take a harmonic function h such that h|BB “ f |BB (which
can be done by Poisson’s formula). Then, f paq ď hpaq “ 1

µpBBpa,rqq

´
BBpa,rq

f pxqdx.

(b) ùñ (a) follows by integrating on both sides, and (a) ùñ (b) by continuity.

Finally, if f is C2, the argument in the properties of harmonic functions directly proves the equiv-
alence of (a) and (c).

Remark 6.11. The set tx : f pxq “ ´8u for a subharmonic function f has measure zero. This follows from
the following facts:
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(a) If f is subharmonic, f P L1
loc, since the set of points where f is locally integrable is both open and

closed.

(b) If f is subharmonic,
´

BB f dx ą ´8 if B Ă U. This is true since the integral over a sphere of f can
be bounded by the value of f at any point of inside the ball, which implies the integral is finite, for
otherwise f “ ´8 on an open set.

Corollary 6.27.1. From the third definition, one obtains the maximum principle for subharmonic functions:
if f : U Ñ R is subharmonic and achieves a global maximum in U, it is constant. Moreover, if U is
bounded and f is continuous up to BU, f achieves its maximum on BU. As a counterexample to the local
maximum principle, maxpx, 0q is subharmonic, yet has local maxima in the left half-plane.

Proposition 6.11. (a) Subharmonic functions form a positive cone, i.e. if u, v are subharmonic, a, b ě 0,
then au ` bv is subharmonic.

(b) If u1, ..., un are subharmonic, maxpu1, ..., unq is subharmonic.

(c) If ϕ is convex harmonic and u is subharmonic, then ϕ ˝ u is subharmonic. In particular eu, u` “

maxpu, 0q, and up, p ě 0, are subharmonic functions.

(d) Since it suffices to check that ∆u ě 0 to show u is subharmonic, logp1 ` | f |2q is subharmonic for f
holomorphic.

(e) From the sub-mean value property, it is clear that a normally convergent sequence of subharmonic
functions is subharmonic, and by monotone convergence, a decreasing sequence of subharmonic func-
tions is subharmonic.

Note that if f is defined on a simply connected domain (possibly with zeros), then log | f | is sub-
harmonic if we define log 0 “ ´8. This is because subharmonicity is a local property, i.e. being
subharmonic in a neighborhood of every point implies global subharmonicity.
Here is an important analogue of Liouville’s theorem, which now cruically holds only in R2.

Proposition 6.12. A subharmonic function u on C that is bounded above is constant.

Proof. Consider a perturbation of u defined by uϵpzq “ upzq ´ ϵ log |z|. This perturbation agrees
with u on BD, and upzq ď uϵpzq on |z| ą 1. Moreover, by construction,

sup
|z|ą1

|uϵ| ď sup
|z|“1

|uϵ| “ sup
|z|“1

|u| “ sup
D

|u|,

where we can use the maximum principle on uϵ since it goes to ´8 as |z| Ñ 8, so

upzq “ uϵpzq ` ϵ log |z| ď sup
D

|u| ` ϵ log |z|

on |z| ą 1. Sending ϵ Ñ 0 yields upzq ď supD |u| on C, which violates the maximum principle, a
contradiction. Thus, u is constant.

Subharmonic functions enjoy very nice properties when discussing their means.

Lemma 6.28. A radial function f is subharmonic iff f is a convex increasing function of log r.

Proposition 6.13. Let u : C Ñ R be subharmonic and and define Iuprq, Juprq, Muprq to be the spherical
mean, ball mean, and maximum value of u for Bp0, Rq respectively. Then, Iu, Ju, Mu are convex increasing
continuous functions of log r, and up0q ď Juprq ď Iuprq and up0q “ Jup0q “ Iup0q “ Mp0q.
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Remark 6.12. Note that Iu, Ju are well-defined since subharmonic functions are locally integrable by Re-
mark 6.9.

Proof. We first prove the statement for Mu. We use the following characterization of convex func-
tions f : R Ñ R - f is convex iff for any linear function l, f ´ l attains its maximum on the
boundary. Then, for any a, b P R, note that

vpzq :“ upzq ´ a log |z| ´ b

is subharmonic in an annulus around 0 (since log |z| is harmonic), and so by the maximum princi-
ple, if Muprq ´ a log r ´ b ď 0 on the boundary, then v ď 0 on the boundary, and therefore also on
the annulus, and since Muprq “ sup

|z|“r vpzq ´ a log r ´ b, we conclude that Muprq ´ a log |z| ´ b ď 0
on the annulus, showing that Mu is convex as a function of log r.

To prove the claim for Iu, Ju, we first assume u P C2. Then, since ∆ “ Brr ` 1
r Br ` 1

r2 Bθθ , and Iu is
radial, we have that

´
∆u “ ∆

´
u ě 0, which implies

I2
uprq `

1
r

I1
uprq ě 0 ðñ prBrq

2 Iuprq ě 0 ðñ t Ñ Iupetq is convex,

since r “ et implies rBr “ Bt. In the general case, we construct

uϵ :“
ˆ

Ipx ´ δzqϕpzqdz,

where ϕ is a smooth nonnegative radial function with
´

ϕ “ 1 that equals 1 on BD. Then, uϵ

decreases to u by the sub-mean value property, so Iϵ :“ Iuϵ decreases to I, so monotone conver-
gence implies convexity of Iu in log r for arbitrary subharmonic u. One can also easily see that Iu
is increasing as follows: find a monotone sequence of continuous functions gk decreasing to u.
Then, for r1 ă r2, pick h harmonic so that u ď h “ gk on |z| “ r2, then u ď h everywhere and
Iupr1q ď Ihpr1q “ Ihpr2q “ Igk pr2q. Sending gk to infinity and using monotone convergence com-
pletes the proof, and the same argument applies for Ju. The fact that Juprq ď Iuprq follows from
the fact that Ju is obtained by radially integrating Iu, which is increasing, and continuity for all
functions follows from convexity.

Corollary 6.28.1. If f P HpDq, then Ilog | f |, Ilog`
| f |

petq are increasing continuous function convex in t, so
Ilog | f |, Ilog`

| f |
Ñ 8.

Corollary 6.28.2. If u is harmonic in an annulus, then Iuprq “ Juprq “ a log r ` b since ˘Iu are convex
in log r.

Corollary 6.28.3. Note that by setting u “ log | f |, the convexity of Mu directly implies the Hadamard
three-circles lemma.

Remark 6.13. The same exact argument shows that the radial Lp averages Iu,p :“ 1
2π

´´ 2π
0 upreiθqpdθ

¯
1
p

are increasing continuous functions convex in log r.

We are now ready to state our main result.

Theorem 6.29 (Fundamental Theorem of Subharmonic Functions on C). Let u : C Ñ R be subhar-
monic. Then, if lim infrÑ8

Muprq

log r “ 0, then u is constant.
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Proof. This follows immediately from the following lemma.

Lemma 6.30. If lim infxÑ8
f pxq

x “ 0 and f is convex and increasing, then f is constant.

Proof. By convexity, for x ă y ă z,

f pyq ď
z ´ y
z ´ x

f pxq `
py ´ xqz

z ´ x
f pzq

z
.

Taking a subsequence such that f pzq

z Ñ 0 as z Ñ 8 yields f pyq ď f pxq, so f is decreasing and
therefore constant.

Since Muplog rq ď Muprq for large r, the conclusion then immediately follows.

Remark 6.14. In this proof, you have to be careful to ensure that r Ñ 8 to say log r ! r.

Suppose f P HpDq and f p0q “ 0. Then, if inf|z|“r | f pzq| ą 0, then 1
2π

´
log | f preiθq|dθ ě log | f p0q|,

and moreover, if f is continuous up to the boundary, the f cannot vanish on BD on a set of
positive measure.

Proof. One can prove the first fact in two ways - either using Jensen’s formula (which actually
shows that Ilog | f |prq is linear in log r) and the fact that

ř

akPBp0,rq log |ak|

r ă 0, or using the subhar-
monicity of log | f |. The second fact follows from the fact that Ilog | f | is increasing, so by Fatou’s
lemma,

´8 ă lim sup
rÑ1

ˆ
|z|“r

log | f preiθq|dθ ď

ˆ
|z|“1

lim sup
rÑ1

log | f preiθq|dθ “

ˆ
|z|“1

f preiθqdθ.

6.11.2 Poisson Kernel and Conformal Mappings

An important and absolutely fundamental question in PDE is that of solving Laplace’s equation,
i.e. finding a harmonic function u such that

#

∆u “ 0 in U,
u “ g on BU,

for some open U Ă R2 and real function g. How can we utilize complex analysis techniques to
solve this? First, we consider U “ Bp0, 1q to take advantage of symmetry. If f pzq “

ř8
n“0 anzn is

holomorphic in U, since every harmonic function is the average of a holomorphic function and its
conjugate, making the substitution z “ reiθ yields

upzq “
1
2

p f pzq ` f pzqq “
1
2

˜

8
ÿ

n“0

anrneinθ `

8
ÿ

n“0

anrne´inθ

¸

.
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Setting r “ 1, we may solve for the coefficients by setting an “ pgpnq. Now, the partial sums are
harmonic, and converge normally to g whenever, for example, g is continuous. This gives an
explicit solution

upzq “
1
2

p f pzq ` f pzqq “
1
2

˜

8
ÿ

n“0

pgpnqrneinθ `

8
ÿ

n“0

pgpnqrne´inθ

¸

,

which can be rewritten in terms of the Poisson kernel

Prpθq “

8
ÿ

n“´8

r|n|einθ “
1

1 ´ reiθ `
1

1 ´ re´iθ ´ 1 “
1 ´ r2

1 ´ 2r cos θ ` r2 “ Re
1 ` reiθ

1 ´ re´iθ

as

upreiθq “
1

4π

8
ÿ

n“´8

r|n|

ˆ π

´π
gptqpeinθ´intθ ` e´inθ`intθqdt “

1
2π

ˆ π

´π
gptq

8
ÿ

n“´8

r|n|einpθ´tqdt “
1

2π

ˆ π

´π
Prpθ ´ tqgpeitqdt.

Ok, but what about Rn? There, the Poisson kernel is

Prpx, ζq “
r2 ´ |x|2

r|x ´ ζ|n

for ζ P Sn´1. Then, the Poisson integral formula becomes

upxq “
1

ωn´1

ˆ
Sn´1

Prpx, ζqgpζqdζ,

where ωn´1 “ µpSn´1q. What are the regularity conditions on g that allow you to use the Poisson
integral formula?

Proposition 6.14. If g P CpBDq, then the Prrgs Ñ g uniformly as r Ñ 1. If f P L1pBDq, then the Poisson
kernel Prgs is harmonic in D. Moreover, if g P LppBDq, then }Prrgs}p ď }g}p and Prrgs Ñ g in Lp.

Proof. That the integral formula is harmonic follows directly from Morera’s theorem and the fact
that holomorphic functions are harmonic. By the maximum principle, }Prgs}8 “ }g}8, so approx-
imating g by trigonometric polynomials gk on the disk yields that Prgks Ñ P uniformly. Note that
this implies that Prrgs Ñ g uniformly as r Ñ 1. Using Jensen’s and approximating by continuous
functions then yields that Prrgs Ñ g in Lp.

These results yield the following theorem:

Theorem 6.31. If u is harmonic in D and supr }ur}p ă 8, then if p “ 1, u|BD is a complex Borel measure,
and for 1 ă p, u|BD P Lp.

Consequently, g P Lp iff Prgs is harmonic with radial norms uniformly bounded in Lp (except for
p “ 1, when g might be a measure).

Theorem 6.32 (Harnack’s Inequality). If f is harmonic on Bp0, 1q and continuous up to a boundary,
then

1 ´ r
p1 ` rqn´1 f p0q ď f pxq ď

1 ` r
p1 ´ rqn´1 f p0q

on BBp0, rq Ă Bp0, 1q. More generally,
sup

Ω
f !Ω inf

Ω
f ,

independent of f .
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Proof. Using Poisson’s formula and the fact that 1 ´ r ď |x ´ ξ| ď 1 ` r (since x P Bp0, rq), the
kernel satisfies

1 ´ r
p1 ` rqn´1 ď

1 ´ r2

|x ´ ξ|n
ď

1 ` r
p1 ´ rqn´1 ,

and the rest follows from the mean value property.

We have obtained an explicit solution to the Laplace equation on the unit disk. But what about
arbitrary domains? There, one has to use conformal mappings.

Definition 6.14. A conformal map is a biholomorphic bijective map between two regions.

The existence of such maps is a fundamental result of complex analysis:

Theorem 6.33 (Riemann Mapping Theorem). Every simply connected open proper subset U of C is
conformally equivalent to the open unit disk, with a unique map f : U Ñ D such that f pz0q “ 0, f 1pz0q ą

0.

Proof. We first need a quick lemma:

Lemma 6.34 (Hurwitz’s Theorem). If fn P HpUq is a sequence of injective functions converging nor-
mally to a nonconstant f , then f is injective.

Proof. Suppose f is not injective. Then, f ´ a has at least two zeros in U for some a P C. Find a
curve γ encompassing at least the two zeros and avoiding any other zeros. Then, by the argument
principle,

1 ě
1

2πi

˛
γ

f 1
n

fn ´ a
dz Ñ

1
2πi

˛
γ

f 1

f ´ a
dz ě 2.

Now, for an arbitrary simply connected open proper U, consider the family F Ă HpU, Dq. For
a R U, note that logpz ´ aq P F exists and is injective. Moreover, note that logpzq ´ logpz0q ´ 2πi is
bounded away from 0 by continuity of log . Now, consider

f pzq “
1

logpzq ´ logpz0q ´ 2πi
,

which is a bounded injective holomorphic function. After scaling and applying a unit disk trans-
formation, one may assume that f : U Ñ D. By Montel and Hurwitz, one may take the supremum
of | f 1pz0q| over f P F , which is still a bounded and surjective holomorphic function. Now, sup-
pose F is not surjective and misses some α P D. If ϕα is the corresponding disk automorphism,
G “

a

ϕα ˝ F is injective, Gpz0q “ 0, and |G1pz0q| ą |F1pz0q|, since by an application of the Schwarz
lemma to Φ “ ϕ´1

α ˝ z2 ˝ ϕ´1
gpz0q

, one gets F1pz0q “ Φ1p0qG1pz0q and |Φ1p0q| ă 1.

Finally, we need a lemma regarding the preservation of the harmonic properties of functions:

Lemma 6.35. If f is a (sub)harmonic function on U and g : U Ñ V is a conformal map, then f ˝ g is
(sub)harmonic on V.
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Proof.
1
4

∆p f ˝ gq “ BzBzp f ˝ gq “ p∆ f ˝ gq|g1|2,

and the conclusion follows from the Laplacian characterization of (sub)harmonic functions.

Thus, to solve Laplace’s equation on an arbitrary domain, one just needs to first map it conformally
to the unit disk, solve the Dirichlet problem on the disk, and map it back onto the desired domain.
Here is a list of commonly used conformal maps:

(a) Upper Half-Plane (Second Quadrant) to Unit Disk z Ñ z´i
z`i .

(b) Right Half-Plane to Unit Disk z Ñ z´1
z`1 .

(c) Horizontal Strip 0 ă Im z ă π to Upper Half-Plane z Ñ ez.

(d) Quarter-Plane to Half-Plane z Ñ z2.

(e) Rotation by θ degrees z Ñ eiθz.

(f) Unit disk to complement of unit disk z Ñ 1
z .

Remark 6.15. The inverses of these maps give the reverse conformal maps.

Remark 6.16. To show that a region is mapped to another region, it is sufficient to show that the boundaries
and one interior point are mapped to each other.

Remark 6.17. Note that since Möbius transformations are automorphisms of the Riemann sphere, they are
conformal maps of regions in the complex plane where they are defined.

Another common type of qual problem is to evaluate a particular contour integral. Here are some
general guidelines on which contours one should use:

(a) Integrals of the form ˆ
R

xα Ppxq

Qpxq
dx,
ˆ

log x
Ppxq

Qpxq
dx

for P, Q polynomials and |α| ă 1 can be evaluated with a keyhole contour with a branch
of logarithm defined away from the positive real axis. Note that at the bottom edge of the
contour, one has to use z “ e2πit to get a factor of e2πiα. Additionally, note that one has to
use the appropriate choice for residues based on the branch cut - for instance, a pole at ´1
has to take the form e

3πi
2 , not e´ πi

2 .

(b) Trigonometric integrals of the form
ˆ π

´π

Ppsin θ, cos θq

Qpsin θ, cos θq

for P, Q polynomials may be evaluated by making the substitution cos θ “ 1
2 pz ` 1

z q, sin θ “
1
2i pz ´ 1

z q, z “ eiθ and using residue theorem.

(c) Integrals of the form ˆ
R

sin x
Ppxq

Qpxq
dx,
ˆ

R

cos x
Ppxq

Qpxq
dx

for P, Q polynomials may be evaluated by taking them as the imaginary (real) part of a
complex integral.
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Theorem 6.36 (Sokhotski-Plemelj Formula). If f is holomorphic, then

lim
ϵÑ0

ˆ
R

f pyq

px0 ˘ iϵq ´ y
dy ´

ˆ
|x0´y|ěϵ

f pyq

x0 ´ y
dy “ ¯πi f px0q.

Proof. Consider rectangular contours around x0 that goes to Im z “ ˘ϵ. Then, by Cauchy’s integral
formula,

ˆ
|x0´y|ěϵ

f pyq

x0 ´ y
dy ´

ˆ
|x0´y|ěϵ

f py ˘ iϵq

x0 ´ py ˘ iϵq
dy ¯ iπ

ˆ 1

0
f p¯ϵeiπθqdθ “ ¯2πi f px0q,

where γ is a semicircular arc around x0 of radius ϵ. As ϵ Ñ 0, the value on the semicircular arc
approaches ¯ f px0q. By the partial Fourier transform property, the second term on the left tends as
ϵ Ñ 0 to

ˆ
R

f py ˘ iϵq

x0 ´ py ˘ iϵq
dy “

ˆ
R

pf pξqe2πix0ξdξ “

ˆ
R

{f px ˘ iϵqe2πipx0˘iϵqξdξ “

ˆ
R

fϵpyq

px0 ˘ iϵq ´ y
dy,

where fϵpzq “ f pz ` iϵq. Thus,
ˆ

R

fϵpyq

px0 ˘ iϵq ´ y
dy ´

ˆ
|x0´y|ěϵ

f pyq

x0 ´ y
dy “ ¯πi f px0q,

and since fϵ Ñ f uniformly as ϵ Ñ 0, this completes the proof.

6.12 Hardy Spaces and Nevanlinna Class

Definition 6.15. For f P HpDq, define the norms } f }r :“
´

1
2π

´ 2π
0 | f preiθq|pdθ

¯
1
p

. Then, since | f |p “

ep log | f | is a subharmonic function, } f }r is increasing in r and convex in log r.

Definition 6.16. Define the Nevalinna class N of all f P HpDq such that

lim
rÑ1

1
2π

ˆ 2π

0
log`

| f preiθq|dθ ă 8.

Lemma 6.37. If f P N, then the zeros of f satisfy the Blaschke condition
ř

n 1 ´ |an| ă 8.

Proof. WLOG suppose f p0q “ 0. By Jensen’s, f P N implies

| f p0q|
ź

n

r
|an|

ď C,

so sending r Ñ 1 yields
ś

n |an| ě | f p0q|´1C ą 0, so
ř

np1 ´ |an|q ă 8.

Definition 6.17. The Hardy space Hp for p ą 0 is the subspace of f P HpDq such that

} f }Hp :“ lim
rÑ1

} f }r ă 8,

with H8 being the space of bounded holomorphic functions on the unit disk.
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Remark 6.18. One can show that if p ě 1 and fn is Cauchy in Hp, using Cauchy’s integral formula that
it converges locally uniformly, i.e. Hp is a Banach space.

Remark 6.19. One easily sees that H8 Ă Hp Ă Hq Ă N for 0 ă q ď p.

Lemma 6.38. Hp Ă HpDq X Lp.

Proof.

} f }
p
p “

ˆ 1

0

ˆ 2π

0
| f preiθq|prdrdθ ď 2π

ˆ 1

0
r} f }

p
Hp dr “ } f }

p
Hp .

Proposition 6.15. If B is the infinite Blaschke product corresponding to the zeros of f P Hp, then f “ Bg
for g P Hp.

Proof. B is well-defined since the zeros of f P Hp satisfy the Blaschke condition, and the partial
products converge monotonically on D, so one concludes by monotone convergence.

Lemma 6.39. For f P Hp, limrÑ1 f preiθq “ f peiθq is well-defined a.e. and in LppBDq. Moreover f preiθq Ñ

f in Lp.

Proof. Define ϕpgq “
´

BD
g fr on Lq for frpxq “ f prxq. Then, by Banach-Alaouglu, one can showing

that there is a weak´˚ convergent subsequence frj Ñ f P Lp, which can be then be shown to
converge pointwise a.e. Moreover, frj ď H f (the maximal function of f ), and H f is bounded in
Lp, so by dominated convergence theorem, fr Ñ f in Lp.

Definition 6.18. Define HppBDq :“ t f P LppBDq : pf pnq “ 0, n ă 0u.

Lemma 6.40. The mapping HppDq Ñ HppBDq given by f Ñ limrÑ1 f preiθq is an isomorphism of Banach
spaces.

Proof. By properties of the Fourier transform, it is easy to see that HppBDq is a closed subspace of
LppBDq, therefore it is also a Banach space. One notes that limrÑ1 f preiθq “

ř

ně0 aneinθ , so this is
indeed a well-defined map. Moreover, we have already shown that this map is an isometry, so it
is injective and continuous. Finally, one can use the Poisson kernel to show that it is surjective,
and conclude by the open mapping theorem.
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