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Analysis Qualifying Exam Notes + Examples

1 Distribution Theory

Definition 1.1. A distribution is a linear functional on a nice function space of test functions. For
example,

(a) The space of distributions D' is the dual of CL.
(b) The space of tempered distributions S’ is the dual of the Schwartz space S.
(c) The space of compactly supported distributions £' is the dual of C*.

Note that one has the inclusions

ClrcScC*cécScD,

where one identifies f with (f,-);2. We endow distribution spaces with the weak-* topology, i.e. L, — L in

S"if Ly(f) — L(f) forall f € S, and write L(f) = {f,L).

The reason for dealing with distributions is to extend the classical theory of analysis to more
general objects than functions. Motivated by integration by parts, we define the derivative of a



distribution as
{f,0x,Ly = —(0x,f,L).

For example, if H is the Heaviside step-function,

foHy = < == [ " pax = £(0),

so H' = 0 is the delta function, defined by (f,5) = f(0). Similarly, the Fourier transform of a
distribution is given by

(f,Ly={(f, L),

and as an example,

(00 = (f,60)) = (~1)}f0)(0) = (Zix)F£(0) = / " (i) = (F, ()5

where the latter is the Kronecker delta. in the sense of functions. A distribution’s support S is
the smallest closed set on such that the distribution vanishes on any function supported outside
S, giving a precise definition to £’. One may define the convolution of a distribution and a test
function by

{puxT)y=u=¢,T),

where 1(x) = u(—x). More generally, if S, T are distributions and T has compact support, then
S # T is defined as the unique distribution satisfying (S « T) « u = S = (T = u) for all test functions u
such that convolution is a commutative and associative operation satsifying the usual formulas.

1.1 Exercises
2 Real Analysis

2.1 Convergence of Functions

A very common type of problem in analysis is to show that a sequence of functions converges (or
does not converge). Here is an outline of the main proof techniques and types of convergence:
2.1.1 A.e. convergence

(a.e.) pointwise convergence: A sequence of (Lebesgue) measurable functions f, is said to con-
verge pointwise a.e. if

p({x s fu(x) + f(x)}) = 0.

Here are some ways to prove pointwise convergence:

Proposition 2.1. If f, — f in LF or in measure, there is a subsequence f,, such that f, — f pointwise
a.e.

Proof. Convergence in L” implies convergence in measure, as

R A B A TR AR,



and taking n — oo yields the claim. Thus, it suffices to prove it if f, — f in measure. Indeed, if for
any € > 0, u{|fn — f| > €} — 0, one may find a subsequence 1 of sets

A= {0 - £ > g b w4 <

By Borel-Cantelli, we get that
1
pu(limsup Ag) = pu{x : | fu (x) — f(x)| > 7% for infinitely many k} = 0.

But the negation of that statement is precisely | f, (x) — f(x)| < % for large enough k, i.e. f,, (x) —
f(x). Thus,

plx: fu(x) + f(0)} =0,
so fu, — f ae. O
Remark 2.1. A very useful criterion for convergence is as follows: a, — a in a metric space iff every

subsequence of a, has a further subsequence converging to a. In particular, since this is not true for a.e.
convergence of the typewriter sequence, one concludes that a.e. convergence is not metrizable.

2.1.2 L7 convergence

Definition 2.1. We say that f, — fin LV for1 < p < o if

W—fWI/m—ﬂ%w»Q

and f, — f in L* if f, — f uniformly except on a null set.

There are three main tools and a variety of corollaries that may be used to establish convergence
in LP.

Theorem 2.1. (Monotone Convergence Theorem) If f, > 0 is an increasing sequence of functions and

fu — f pointwise a.e., then f, — f in LP.

Proof. Let f, — f be an increasing sequence of functions. Then, clearly, lim [ f, < [ f. For the
converse, pick a simple function g such that | f — g < €, and consider the set of points E,, = {x :

fu(x) = ag(x)}. Then,
/fn > : S

and as « — 1 and n — 0, taking the supremum over all simple g yields the claim.

The L7 case then easily follows. ]

Theorem 2.2. (Fatou’s Lemma) If f, > 0, then [liminf f, < liminf [ f,.

Corollary 2.2.1. (Reverse Fatou) By applying Fatou to ¢ — f,,, one gets that if f, € L' and f, < g,g € L,
then

lim sup / fn < / lim sup f,.



Theorem 2.3. (Dominated Convergence Theorem) If f, — f a.e. and |f,| < g for g € L?, then f, — f in
LP.

There are two particularly strong results that are necessary to prove more interesting claims re-
garding convergence in L.

Theorem 2.4. (Egorov’s Theorem) Let u(X) < oo, and suppose f, — f a.e. on X. Then, for every € > 0,
there exists a set A such that u(A) < € and f,, — f uniformly on A°.

Proof. Consider the set
1
Apg = x| fu(x) = f0O)] > £}

Recall from the proof of convergence in measure implies a.e. convergence that y(limsup, , A, x) =
0 for all k. Pick a subsequence # s.t.

Bk = ﬂ An,k

nZle

and p(By) < 5 for all k. Then, if C = | J; By, #(C) < €, on C° one has

VEkImn = ny, | fu(x) — f(x)] <

4

==

which implies uniform convergence.
O

Theorem 2.5. (Lusin’s Theorem) If u(X) < oo and f is measurable on X, for any € > 0 there exists a
compact set K such that (K < € and f is continuous on K.

Proof. Take a sequence f, € C.(X) such that f, — f in a.e. (which is possible by density of C. in
L'). By Egorov and regularity of the Lebesgue measure, f, — f uniformly on some compact set
K such that u(K®) < €, so f is the uniform limit of continuous functions on a compact set, i.e. it is
continuous. ]

We now list the proofs of the fundamental inequalities used in analysis.

Lemma 2.6 (Young’s Inequality). Fora,b > 0,% + % =1,

aP bl
ab < — + —,
p 4

with equality iff a? = bA.
Proof. Consider x*~! and its inverse x7~! on [0, a] x [0, b]. Then, the sum of the integrals of the two
functions is at least the are of the rectangle, with equality iff the functions touch the corner, i.e.

aP~1 = b, s0 a? = b7, and the claim follows. O

Definition 2.2. If p, g satisfy the condition above, they are known as Holder conjugates.



Theorem 2.7 (Holder’s inequality). For f € L?,q € L, where 1 < p,q < oo are Holder conjugates, then

/ fsl < If1,lgle,

with equality for 1 < p < oo iff |f|P = c|g|7 for some ¢ = 0.

Proof. Normalize f, g so that | f||, = ||gll; = 1, and apply Young’s inequality. Thecasesp = 1,4 = 1
may be checked directly. The equality follows from the equality case in Young’s inequality. O

Corollary 2.7.1 (Generalized Holder). If >}/_; ﬁ =1, then

n

< [Ifil.

r k=1

[ [ fe
k=1

Theorem 2.8 (Minkowski’s Inequality). For 1 < p < o,

1f +&lp < 1£1p + 18]y

with equality for 1 < p < oo iff f = cg for some constant c.

Proof. Normalizing so that |f + g|, = 1, by Holder,
/|f+8|p </|f+g|p_1|f| +1f +glP Mgl < If + &l (UF 1 + Iglp) = 1£1p + 8y,

-1
and so equality holds iff |f + g|p7 = c|f|P = c’|g]P, and since (p — 1)q = p and g and f must have
the same sign at each point, equality holds iff g = cf.

O

Theorem 2.9 (Dual of LF). For1 < p < o, the dual of LF is L1, where % + % =1.

Proof. For ¢ € (LP)*, define the (signed) measure v: A — ¢(xa). Then, the desired function is the

Radon-Nikodym derivative gy = Z—Z, and setting f, = |g| ’ X|g|<n and using monotone convergence
lemma yields g € L. O

Definition 2.3. For a o-finite measure/topological space (X, i), define the Banach spaces

rea(p) < ca(p) < ba(p)

of bounded regular Borel, countably additive, and finitely additive signed measures absolutely con-
tinuous with respect to y with the total variation norm.

Remark 2.2. The above proof shows that (L*(X, u))* = ba(u), and (L')** = ca = (L®)*.

Lemma 2.10. L! is weakly sequentially complete, i.e. every weakly Cauchy sequence converges.



Proof. Clearly, f, is uniformly bounded in L! by Banach-Steinhaus. Define the signed measure

v(A) = lim /Afnd]/t,

n—aoo

and consider the Radon-Nikodym derivative f = Z—Z. Then, one easily verifies that [ fxady =
v(A) = lim, [ fuxady, and so f, — f. O

Remark 2.3. Since the unit ball in a reflexive Banach space is weakly sequentially compact, all reflexive
Banach spaces are weakly sequentially complete.

Corollary 2.10.1. Iflim,_.« [, fu exists and is finite for all measurable A, then f, — f for some f € L.

The following are important consequences of Egorov’s Theorem as they relate to convergence in
LP:

Lemma 2.11. If u(X) < o0, |fullp S M < 00,1 < p < 0, and f, — f a.e., then f, — fin L.

Proof. First note that f € L7, as by Fatou,

IFl = 1P = | tiyinf £, < timnf £, < e

Fix € > 0. By Egorov, f, — f uniformly on some set A, so by Holder,
1
/le—fnl = /A \f—fn|+/Ac |f = ful < ep(X) + [ xaclglf = fullp = ep(X) + u(A)TM < e(u(X) + M)

for p,q Holder conjugates and large enough n by choosing A such that ],t(AC)% <e€. O

Remark 2.4. The same argument shows that if u(X) < o, f, — f ae. and |fu|; < M for q > p, then
fu— finLP.

Lemma 2.12. For1 < p < o, if fy € LF, fy — fae, and | fu|p — |fp, then fu — fin LP.

Proof. Note that since |x| is convex, |f — fu|f < 2P—1(|f|p + [fu|?). Applying Fatou’s lemma to
2P (\f|P + | fal?) = |f — ful? yields

2P| fIP < T inf 2P| £l + | fullp) — limsup |[f — faul},
which then yields the desired inequality. O
Corollary 2.12.1. If f, — f a.e. and f, € L2, f € L? and ||f|}» < liminf | f,J-.

Proof. Fatou’s lemma applied to f2. O



2.1.3 Uniform Integrability and Compactness in L

Definition 2.4. A subset X c LV is called uniformly integrable if it is uniformly bounded in LP and for
any € > 0 there exists a § > 0 such that for any f € X, || f|rg) < € whenever u(E) < 6.

Remark 2.5. If A is a finite measure space, then X is uniformly integrable in L iff for all € > 0, there is a
A such that supy [ ¢y f(x)dp <e.

Proof. Suppose X is uniformly integrable. Then, by Chebyshev, p(|f| > A) < % for M = supy | flh,
so by uniform integrability, one can make f| fisa S (x)du < € for large enough A. Conversely, we

get that supy | f|1 < e+ Au(A), and forany € > 0, [ [f| < e+ Au(E) < 2eford = §. O

A lot of results regarding convergence work only on finite measure spaces, yet lots of time one
works with infinite measure spaces. A very useful concept known as tightness allows us to reduce
the problem to a finite measure space.

Definition 2.5. A family X < LP(X) is tight if for all € > 0, there exists E = X, u(E) < o, s.t.
| flLeeey < € forall f eX.

Theorem 2.13 (Vitali Convergence Theorem). If {f,} is a tight sequence of uniformly integrable func-
tionsin LF,1 < p < o, then f, — f in LV iff f, — f in measure.

Proof. Suppose f, — f in measure. Pick € > 0 and choose a corresponding E. Then, by uniform
integrability, pick § > 0 such that | f|;»r) < € when u(E) < é. Moreover, by Egorov, pick Ae  E
such that y(A¢) < 4. Passing to an a.e. convergent subsequence, we use Fatou’s lemma to conclude

that || fl|zr o), [ flrrcac) < € = (U(E) + 3)e.

/‘fn_f|pdx:/EmAe|fn—f|de+/ \fu — fIPdx + 2¢

EnAS

< u(E)e + 2e + 2e.

O]

Remark 2.6. Since Egorov shows that convergence a.e. on a finite measure set implies convergence in
measure, one obtains the following strong corollary: if f, is uniformly integrable in L?, tight, and f, — f
a.e., then f, — fin LP.

Lemma 2.14. If f, € L' and [, f, converges and is finite for all measurable A, then f, is uniformly
integrable in L. In particular, if f, — f in LP, then {f,} is uniformly integrable.

A very important theorem is that of precompactness in L spaces.
Theorem 2.15 (Kolmogorov-Riesz). X < LF(Q)), () < R",1 < p < oo is precompact iff:
(a) Boundedness: Sup pex Ifll, < oo

(b) Tightness: For any € > 0, there exists an R > 0 such that f[_R,R]C |fIP <e€forall feX.

(c) (Uniform) Continuity: For all € > 0, there exists a & > 0 such that [ |f(x +y) — f(x)|Pdx < €
whenever |y| < ¢ forall f € X.

Remark 2.7. Tightness and uniform continuity imply boundedness, so it is not strictly necessary.



Remark 2.8. If Q) is bounded, uniform continuity is the only required condition of the theorem.

Proof. (= ): Suppose X satisfies the conditions of the theorem, and fix ¢, R, y as in the statement.
Let Q be an open cube centered at the origin, let Q; be nonoverlapping translates such that their
closure covers B(x, R), and define Pf on Q; to be the average of f on Q; and 0 otherwise. Then, by
Minkowski and noting that x, y € Q; implies x — y € 2Q,

p
dx

Bl <o + 3 / \ (gl (F)— f2)dz

<€ +Z/ ! /|f f(x+y)|Pdydx
1

<ef+ ,”(Q)/ZQ " |f(x) — f(x+y)|[Pdxdy < (2" + 1)eP

O]

(<) It X < LP(Q) is precompact, it is clearly bounded. Moreover, for € > 0,if B(f1,€), .., B(fu, €),
cover X, pick R s.t. | filrr((x,r)) < € Then,

Ifller Bz, R)e) < If = fil Lo Bx,R)e) + I fillr(B(x,R)e) < 2€.

Uniform continuity is established almost exactly the same way.

2.1.4 Weak and Weak-* Convergence

Definition 2.6. For 1 < p < oo, let q be the Holder conjugate of p. We say that f, — f (or f, converges
weakly to f) in L? if (f,,g) — (f,g) for all g € L1, where the inner product is just {f,g) = [ fg. For
1 <p <o, wesay f, — f (or f, converges weak-*to f)in L if {f,,g> — {(f,g) forall g € L1. Note
that weak and weak-* convergence are the same for 1 < p < oo.

There are two examples to keep in mind when proving weak convergence:

Example 2.1 (The traveling wave). If f € LP,1 < p < w then if f,(x) = f(x +n), f — 0in LP.
Proof. For simplicity, we consider the case when f € LP(R). For any g € L9, Pick compact sets

A, B such that |f|rac), I€]rsey < €. Then, for n > SUP . yeB |lx —y|, Bn (A—n) = &, where
A—n={a—n:ae A}. Thus, by Holder,

Sl =| [ 118

< / fx+ m3(x)

< [Weemg@l+ [ Ifeemgtol [ ifemgto)

(Bu(A—n))e
<elglg +elflp+ €%

where | f|rr(py < € since (B +n) n A = &. Sending € — 0 completes the proof.



Remark 2.9. Clearly, if one chooses g = 1, this need not hold for p = 1.

Example 2.2 (The Oscillator). Let f € L* be a k-periodic function. Then, if fu(x) = f(nx), fn —
L% f(x)dx in L1

xJo .

Corollary 2.15.1. Suppose f, — f in LP. Then, ||f, |, is uniformly bounded, and | f||, < liminf | f,|,.

Proof. Weakly convergent sequence are bounded + weak lower-semicontinuity of the norm. [

Clearly, the examples show that weak convergence need not imply convergence a.e., convergence
in measure, or L? convergence. Conversely, it is easy to see using Holder’s that convergence in L?
implies weak convergence. The vertical blow-up examples shows that convergence in measure or
a.e. convergence do not necessarily imply weak convergence. The following important theorem
provides a criterion for weak convergence:

Theorem 2.16 (Dunford-Pettis Theorem). Let X < L. Then, X is uniformly integrable iff it weakly
precompact.

Proof. If X is uniformly integrable, the weak-* closure X' c (L*)* is weak-* compact by Banach-
Alaoglu. A finitely additive map F is countably additive iff lim, F(A,) = 0 for (), A, = &,
where A, is a decreasing sequence of sets. Then, uniform integrability implies that any F € X"
is countably additive, and thus is given by integration against some f € L!, and there exists a
sequence i~1(f,) — i"1(f) in L. In particular, i ' : X~ — L! is weak—*-weak continuous. Thus,
i~1(X") is weakly compact, so X is weakly precompact.

Conversely, suppose X is weakly precompact and not uniformly integrable, and pick a nonuni-
formly integrable subsequence f,, such that f| fuon |fuldy = C for some C > 0. Then, by Eberlein-
Smullian, any sequence has a weakly convergent subsequence. But this implies that the subse-
quence is uniformly integrable (see Lemma 2.9), a contradiction. O

2.2 Exercises

Spring 2010 Problem 1 Show that a sequence that converges in L? has an a.e. convergent
subsequence. Moreover, find a sequence of functions that converges to 0 in L? that does not
converge a.e.

Proof. The first part is Proposition 1.1. For the second part, one may take the typewriter sequence
fr=Xp f2 = X011 X3 = X[ - which converges to 0 in L2 but not a.e. O

Spring 2012 Problem 1 Let1 < p < o, f, : R* — R such that limsup | f,|, < c. Show that if
fn — f ae, then f, — f weakly.

Proof. For any g € L7, pick a compact set A such that |g|sac) < € and [g]rsr) < € whenever
#(E) < ¢ for a small enough 6 > 0. Then, by Egorov’s theorem,

[ < [ 1G5+ 1081+ [ 16 sl = 0

10



where the first term is bounded by uniform convergence on a compact set, second term is bounded
since y(E) < 0, and the third term is bounded by choosing A to be large enough. O

Spring 2014 Problem 3 Suppose f, — 0 a.e., |fu]2 < . Show f, — 0in L2.

Proof. This is a specific case of the previous problem. O

September 2018 Problem 1 Suppose f, — f a.e., sup, |fu|2 < o, and sup,, |xf.[1 < o0. Show
that f,, f € L1, f, — f in L!, and that neither of the last two conditions may be omitted.

Proof. The second condition implies that on [-M, M|, | fu[1 < % for some fixed N > 0. In partic-
ular, on [-M, M], lemma 1.6 guarantees that f, — f € L!. Thus, for any € > 0, pick M and 7 large
enough so that [, e |f| <€, so then

Jsi= ] A sl

for sufficiently large M.

+(%+e)<2€

N ™

Neither of the last two conditions may be omitted, as demonstrated by the counterexamples f,, =
X[nns1) and g, = ”27([0,%]‘ H

Fall 2020 Problem 2 Show that there exists a constant ¢ such that

(f,cos(sin(nmx)))y — {f,c)
forall f e L.

Proof. Note that cos(sin(nmx)) is 2-periodic. Thus, ¢ = % foz cos(sin(nmx))dx by the oscillator
example. O

Fall 2010 Problem 3 Let f,(x) = ¢ Show f, converges weakly in L'([0,1]) and weak-*
in L*([0,1]).

Proof. Let f(x) = ¢S™?™) and note that f is 1-periodic. Then, by the weak convergence lemma,
JIS fol e$n27¥) dx in L*. Moreover, f, is uniformly bounded in L ([0, 1]). By density arguments,
to show f, — fol eSIN27Y) gy in L1, it suffices again to consider characteristic functions of closed

intervals. But this is indeed already shown by the weak convergence in L* argument, so the proof
is complete. [

Spring 2020 Problem 2 Let f, be a sequence of differentiable functions satisfying sup || f,[1 <
0, sup | ful1 < oo, and for any € > 0, there exists an R(e) > 0 such that sup || fu[ 1 rje) < €
Show f, is has a convergent subsequence in L.

11



Proof. We use Riesz-Fischer. Clearly, the first two conditions establish uniform boundedness and
tightness. The third condition and Minkowski shows that for |y| < 6,

[ —s@i= [ [ o< [ 1 < s

by the uniform bound on the derivatives. Thus, the conditions for Riesz-Fischer are satisfied,
showing that {f,} has a convergent subsequence in L.

O]

Spring 2017 Problem 2 Let f, : [0,1] — [0,0) be a sequence of nondecreasing functions uni-
formly bounded in L?. Show that there exists a subsequence that converges in L.

Proof. We apply Riesz-Fischer. Indeed, since f,, is uniformly bounded in L?, it is uniformly bounded
in L!. Since the sequence is on a finite measure space, tightness is unnecessary. Finally, to show

continuity, we use the fact that f, is nondecreasing. Namely, this implies that each f, has at most

a countable number of discontinuities, so each f, agrees with a continuous function a.e.

Then, for any € > 0,
1-y
A fx+y) — F(x)ldx
0

Show that I'(IN) has the Schur property, i.e. every weakly convergent sequence is norm-
convergent.

Proof. Suppose x, — x but x, + x in I*. Then, there exists a subsequence satisfying |x,, — x| > e.
By a diagonalization argument, pick a further subsequence where the ith element in each sub-
sequence has the same sign for all i. Now, let Sy be a finite subset of the support of x,, — x s.t.
|2¢n, — x|pn(s,) = 5- Note that [, Sx cannot be bounded, as otherwise x, + x on a finite set. In par-
ticular, norm convergence on finite sets implies that after passing to another subsequence, there ex-
ist a sequence of pairwise disjoint A;  S; s.t. [xu, — X[|n(a,) = 7. Then, letting y = sign(xy,)1, a,,
we see that ¢

1/

for all k, which is a contradiction. Thus, x,, — x in I1. O

(¥, —x) -y =

Conclusions

(a) If f, converges a.e. and is bounded by an integrable function, apply the Dominated Con-
vergence Theorem to get convergence in L*.

(b) If fu — f converges a.e. and | f,||, — | f]p, then f;, — fin LP.

(0) If u(X) < oo, sup | fullp < 0 and f, — f a.e, then f, — fin L7 for g < p.

(d) If u(X) <ooand f, — f ae., fu — f. Additionally, if f, is uniformly integrable, f, — f in
LP.

(e) If sup | fulp < ocand f, — fae., fu — f.

(f) X is precompact in L iff it is tight, continuous, and uniformly bounded.

12



3 Fourier Transform

3.1 Interpolation

We start with a review of some key results regarding interpolation in L” spaces. The overarching
idea is that if a function belongs to two different L spaces, it actually belongs to all those in
between the two.

Proposition 3.1. Foralll1<p<q<r <,
LPAL — L1 LF+L'

are continuous inclusions, where LV ~ L" is a Banach space with norm | f||, + | f|, and LY + L" is a Banach
space with norm infey—rera [|8]p + Al

Proof. That all of these are Banach spaces is left as an exercise. Note that for some A € [0,1],
g=Ap+ (A=A,

so by Young’s inequality,

/Iflqu = /If“’“l_wdx <IFPILIFS Y < IFIBIFIR < Afl + (= D)fl-
Similarly, if f € LY, f

ont gl + Il < [t + i fll < 1l

O

The conclusion is that one may interpolate between intermediate L¥ spaces. We now considerably
generalize this approach by introducing interpolation between bounded operators.

Definition 3.1. f is in weak L7 if
P
Pl 1) > A < 5
where the smallest such C is the weak LP norm ||f| .. We say a bounded operator T : LP — L1 is of strong
type (p,q), and a bounded operator T : LP — L9% is of weak type (p,q).

Remark 3.1. Clearly, if LP — LP** is continuous with norm 1.

Theorem 3.1 (Riesz-Thorin Interpolation Theorem). Let T : LPo — L%, LP1 — LT be a linear bounded
operator. Then, it is also bounded as an operator T : LPt — L, where 0 < t <1 and
1 1—-t ¢t 11—t t

Tle < ITIp ITH = ——+—, —=——+—.
[ Hqt I ”po I le pi Po p1 qt qo T

Remark 3.2. We call the Riesz diagram of an operator T to be the set of points in the unit square such
that T is of type (%, %), and the theorem tells us that such a set is convex.

Proof. The proof of the theorem is quite long, but ultimately relies on the following well-known
lemma from complex analysis:

13



Lemma 3.2 (Hadamard Three-Lines Lemma). Let S = {z : 0 < Rez < 1} and suppose F : S — C is
bounded, analytic on the inside, and continuous on the boundary. Then, if My = supy, ,_o |F(2)|, one has
MG Ml 9M9

Proof. Without loss of generality, suppose My = M; = 1 (otherwise, divide by appropriate pow-

22—
ers). Then, note that F,(z) = F (z)eTl converges normally to F and is bounded by 1 on the
boundary, so by maximum modulus, F is bounded by 1. Note that F, are needed to converge to 0
since one can only apply maximum modulus on a bounded set. O

Corollary 3.2.1. By setting g(z) = F(e*), one obtains the Hadamard three-circles lemma, which states
that on an annulus, if M(s) = sup,_ |g(z)|, then log M(s) is convex, i.e. log M(r) is convex as a
function of logr.

Then, by a density argument, the proof reduces to proving the inequality for step functions taking
finitely many values, which can then be shown using the lemma. O

Finally, we need one last extension of the Riesz-Thorin interpolation theorem.

Theorem 3.3 (Marcinkiewicz Interpolation Theorem). If T is of weak type (po,qo) and (p1,91), then
T is of strong type (pg, qe) for

1 1-06 6 1 1-0 0
+

pe po  pi'qe G0 @1

3.2 Fourier Transform
Here are some key results about the Fourier transform that are tested quite frequently on the qual:

Definition 3.2. The Fourier transform fof f(x) is defined as

FUNE) = F@) = [ fxge 2,

~

The inverse Fourier transform foff(g) is defined as F~1{f}(&) = f(x) f]R" E)eXmiE ¥y,

@ F(0) = [ f(x)

(b) f1(&) = —2migf(©).

(c) frg=fg.

@) f(x+x0) = FT0EF().

(e) F*{f}(x) = f(—x),ie F*=1,s0F has eigenvalues i,—1,—i,1.
1) Fle ) = =7l

(¢) Riemann-Lebesgue Lemma: The Fourier transform is a linear operator F : L' — Cy, where Cy is
the space of (uniformly) continuous functions vanishing at infinity.

(h) Plancherel’s Theorem: F : S — S is an isomorphism and F : L* — L? is a unitary isometric
isomorphism. In particular, ||f|2 = ||f|2 and {f,g) = {f, ).

14



Remark 3.3. One can also take the (inverse) Fourier transform on the torus TX, which is equivalent to
taking the transform of a periodic function. This is known as a Fourier series. In this case,

0
J’c\(n)EZm'n-x
—o0

flny = || flae 2 dx, fx) =

for n € ZK. Then, the same theorems apply, except that now, F : L* — 12 and F : L' — cy.

Remark 3.4. While F : L? — L2 is an isomorphism, it is not surjective as a map F : L' — Co. For if it
were, it would induce an isomoprhism of the dual space F* : My — L*, which is not surjective since the
Fourier transform of a measure is necessarily uniformly continuous. However, by a standard application of
Stone-Weierstrass, the range is dense in Co.

Remark 3.5. Note that the Fourier transform interchanges derivatives and multiplication. Consequently,
reqularity on one side implies decay on the other side and vice-versa.

Corollary 3.3.1 (Hausdorff-Young Inequality). By Riesz-Thorin, since F : L' — L* and F : L? — L?
is bounded, it is also bounded as an operator F : LF — L1, where 1 < p < 2,2 < q < 0, and

ie. F:LP — LV, for1 < p < 2and p,p' conjugates. In particular, applying to Fourier series yields
F:LP 1P and F71: 1P - LV for1 < p <2.

Of particular interest are the Fourier transforms of certain compactly supported functions, which
can be holomorphically extended to the upper half-plane and are summarized in the following
theorems.

Theorem 3.4 (Paley-Wiener I). f € L2((0,00)) iff f is holomorphic in the upper half-plane and the L2

norm of f is uniformly bounded over horizontal lines.

Theorem 3.5 (Payley-Wiener II). f € L2(RR) is compactly supported in [—A, A iff f is holomorphic in
the upper half-plane and of exponential type A.

Proof. If f € L*(R) has compact support in [—A, A], for all ]? (¢) is well-defined in the upper half
plane (as one has a decaying exponential). Moreover, by Fubini and Cauchy’s theorems, one may

check that ]? is holomorphic. Finally,
A
f(a + bi) _ / f(x>e—2m'x(a+bi)dx < C€A|a+bi\,
—A

as the exponential converges to 0 as b — . Conversely, if f is the Fourier transform, let fc(x) =

f(x)e=€Fl. If one can show that fe is supported on [~A, A] and fo — f in L?, we are done by
Plancherel. O

Corollary 3.5.1. As a direct corollary of this, we can conclude that the Fourier transform of a compactly
supported continuous function is an analytic function decaying at infinity, and so is not compactly sup-
ported by the maximum modulus principle.

Here is an important generalization of these results.
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Theorem 3.6 (Schwartz-Paley-Wiener). An entire function u is the Fourier transform of a compactly
supported distribution v supported on B(0, A) iff u « |z|NeAl. Moreover, u « |z|™NeAF! for all N = 0 iff
ve CPF.

We know that the Fourier transform of a Gaussian decays like another Gaussian. The question is,
can we do better? Turns out, we cannot. This is a reflection of the so-called "uncertainty principle"
of Fourier transforms.

Proposition 3.2 (Uncertainty principle). For f € L*(R) differentiable, | f||» = 1,

1
1672’

Ixfl2lgfll2 =

with equality obtained only if f and f are Gaussians.

Proof. Integrating by parts,
1= [Iffdx = - [2xRe (1)F,

SO
1<2|xfI31 £z = 4mlxfIZIC£13,

and equality holds whenever xf = f’, which defines a Gaussian. ]

Finally, it is worth mentioning the notion of Fourier multipliers/symbols. Define the Fourier
symbol St of an operator T to be

St{f} = (F'TH){f}

whenever this is well-defined.

3.3 Fourier Series

By Holder, it suffices for f e L!(T¥) to have a well-defined Fourier series f Moreover, by Hilbert
space theory, one deduces that F : L?(T") — [>(T") is a unitary isometric isomorphism, so one
has convergence of the Fourier series in L2. By Riesz-Thorin, we have F : L? — I for1 < p < 2.

Definition 3.3. The partial sums of the Fourier series of f on T are given by S, f = Dy, * f, where

n

Dn(x) = Z eZm'kx _

k=—n

sin((n + 4)x
sinx

is the one-dimensional Dirichlet kernel. On T", the Dirichlet kernel is D,, = 1—[]1(\]:1 Dn(x;).

The Dirichlet kernel is unbounded in L! and so is not particularly nice to deal with, so we intro-
duce a smoothed version.

Definition 3.4. The Fejer kernel is defined as Ky := 3 >n_; Dy = (—cosnx)

n(l—cosx)*
Theorem 3.7. The Fejer kernel is an approximation to the identity.

Remark 3.6. The Fejer and Dirichlet kernels both converge as distributions to the tempered distribution
known as the Dirac comb ® = ., _, 5(x — n). However, since the Fejer kernel is an approximation to the

identity, we have K, f — f forall f € LF(T").
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Lemma3.8. S,f — fin L? iffsup,, |Su|, < oo, where S, : LF — LP.
Proof. One direction is immediate from Banach-Steinhaus, and the other follows from

[Snf = fllp = 1Su(f = Kuf) + Knf = flp < SliP(HSan +1)e.

Proposition 3.3. S, : L? — L” are uniformly bounded in LV iff 1 < p < 0.
Corollary 3.8.1. Since S, is not uniformly bounded in L' or L*, we get that S, f — fiff1 < p < 0.

Remark 3.7. By Baire Category, one sees that the set of functions that converge at a particular point is
meager in LL.

Note that one has the following bounds on the decay of certain Fourier coefficients.

(a) If f is absolutely continuous, f (n) « .

~

(b) If f is a function with bounded variation K, [f(n)| < 5 f'n' .

(©) If f € CO* with | f|coe = K, |f(n)] < .

|n[*

We now provide a list of results regarding different types of convergence of Fourier series. Note
that the proofs of these results are quite technical and are therefore omitted.

Theorem 3.9. (a) If1 <p <o, f e LP, then S,f — fin LP.
(b) If f is of bounded variation, then S, f — f pointwise, and if f is continuous, S, f — f uniformly.
(c) If f is a-Holder continuous for & <1, then S, f — f uniformly.
(d) Knf — f a.e., uniformly if f is continuous, and in LV if f € LP.
(e) Carleson’s Theorem: For p > 1,if f € LV, S, f — f a.e.

Remark 3.8. (d) follows from the fact that the Fejer kernel is an approximation to the identity, and (a)
follows by Riesz-Thorin.

One may also ask about singly/doubly periodic holomorphic functions.
Proposition 3.4. An entire 1-periodic function has an absolutely convergent Fourier series expansion

0

f(Z)I Z anEZTEinz

n=—0oo

iff limsup,, \an\% = 0. Moreover, every bounded entire 1-periodic function on the upper half-plane has a
Fourier series expansion with only positive terms iff lim sup,, \an\% <L

Proof. Note that f(z) = F(e?™) for some holomorphic function F : C\{0} — C. Thus, F has a
Laurent series expansion, which gives the Fourier series for f. The converse follows by completing
the argument in the opposite direction. For the half-plane, we note that F : ID\{0} — C, so using
Riemann’s removable singularity theorem yields a bounded holomorphic function with a power
series expansion, which gives the Fourier series for f. O
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3.4 Exercises

Fall 2020 Problem 6 Show that for all odd f € C![-1,1],

£z < 1f'llze-

Proof. Consider f as a periodic function and consider its Fourier series. By Plancherel,

1£lez = 1 £z < linflz = 1f 2

~

where the inequality holds since |n f (n)] = |f(n)| forn > 0 and f f f=0. O

Spring 2015 Problem 4, Wiener’s Tauberian Theorem Let f € L!(IR). Show that the translates
of f, f(x — a), are dense in L!(R) iff f(¢) # 0. Similarly, show that for f € L?, the translates are
dense iff f is nonzero a.e.

Proof. This is a well-known result known as Wiener’s Tauberian Theorem. We first show it in L2.

By the properties of the Fourier transform, f @) = ezmgaf(é‘). Then, suppose that g € L? is
orthogonal to all translates of f, i.e.

[ rx—ag@-o.

By Parseval’s Theorem, this equals

[ Fa—ag@ - [ f0g@) - o
for all 2 € R. In particular, this implies that
FfR)a) =

for all 4, and is thus equal everywhere. Since the inverse Fourier transform is injective. This im-

plies that f g = 0, and since f is nonzero a.e., ¢ = 0,ie. ¢ = 0 a.e. Conversely, suppose that f
vanishes on a positive finite measure set X. Since the Fourier transform is an isometry on L2, note

that the translates of f are dense in L? iff ¢>¢? f (¢) is dense in L?. However, xx € L? is orthogonal
to all functions of the form 2™ which is a contradiction.

We now prove the more difficult version of this theorem. Suppose f (o) = 0 for some ¢y € R.
Then, fa (o) = 0 for all a € IR, so the Fourier transform at ¢y vanishes for all functions in the span.
However, the Fourier transform of a gaussian is everywhere nonzero, which is a contradiction.
The other direction is complicated and over 100 pages in length.

O
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Fall 2014 Problem 4 Define X as the set of f € L?([0, 7r]) that admit a representation of the form

= Y eucos(nx), |(nyeqlz < oo,

Show that if f, g € X, then fg e X.

Proof. By Fourier series, note that X is the set of f € L? such that f (n) = f (—n). and |[{(n) ]? |2 < 0.
First, if f, g € X, then

fem)y=fxgmy = > fn-b3k) = > flk- 2 F(—k—m)g(k) = fg(~n).
k=—0 k=—00 k=—00
Moreover, [(n)fga < [(n)f * &2 < [(n)fll2|gl2 < oo, since § € 12 for g € L2. O

3.5 Convolutions

Recall the definition of a convolution:

Definition 3.5. The convolution of f and g is defined as

- [ flr= gty
R

Here are some important properties of convolutions:
(@) frg=gx*f.
(b) (f)xg=f+(&")=(f*g)"
(c) if fis C, fx gis CK.
(d) [f *glh = Ifllglh-
These properties provide for the following nice applications:

Theorem 3.10 (Approximation to the Identity). Let f € LP. Then, if ¢ € CX(R"),||¢|1 = 1, is such
that ¢ := € "P(2) — 0 as € — 0 (in the sense of distributions), then f ¢ is smooth, lime_,o f * pe = f
a.e., normally if f is continuous, and in L} if f € L} .

Proof. A.e. convergence follows from Radon-Nikodym and approximating by simple functions.
The other types of convergence follow from the continuity of translation operators on L”. O

The convolution of two functions measures their magnitude of intersection and has the following
nice properties:

Lemma 3.11 (Steinhaus Theorem). if u(A) > 0, A — A contains an open neighborhood of 0.

Proof. We in fact prove a stronger claim: if A, B are distinct sets of positive measure, there exists
an x such that (x — A) — B contains an open neighborhood of 0.
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Consider the convolution of functions x 4 * x. Note that

Ixa* xsl = / / XA — )xs)ldxdy = [xalilxsli = u(A)u(B) >0,

and since x 4 * x g is continuous, there is an x such that on an open neighbor hood of x, x 4 * xp(x) >
0. But this precisely implies that Bn (y — A) + G fory € (x —6,x +6),i.e. &' € (x — A) — B for
|0’ < 6. O

Corollary 3.11.1 (Young’s Convolution Inequality). Note that for an arbitrary ¢ € LP, convolution
with g defines a bounded operator T : L' — LP and L1 — L®, since by Minkowski,

Tl = 1f+sly = | [ st —vity) < [ swlsipy <1y

LP(dx

and
ITflloo = Sup/f(y)g(x —y)dy < |flqlglp-

Thus, Riesz-Thorin guarantees that T is bounded as an operator from L" — L°, i.e.

If = gls < I8y

for

1 t

S=l-tt+ -, = = +f:1+1.
s q p rop s

4

1 1t 1 1
"

3.6 Layer Cake and Fubini
Often times, one wants to consider a different integration variable.

Lemma 3.12 (Chebyshev’s Inequality). For f € L?,
I£17

pl @) > M) < oy

Proof.
p= [ AP = i £l = apa
£1>A

O
Lemma 3.13 (Layer Cake Decomposition). For f € L7,
o0
It = [ e = [ pAr e )] > Aan
Proof. By Fubini,
LI ©
/ |fIPdx = / / pAP A = / / pAP )(A<‘f(x)|(/\)d/\dx
X X Jo xJo 1)
o0 o0 (
= [ o [ dpeatodsan = [T paruies 71> Apax
Note that if f € LP, then one ends up integrating 1, which is almost in L!. O
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Remark 3.9. Intuitively, this states that the integral of a function can be approximated by horizontal
rectangles lying below the graph of the function of width AA and height u{x : |f| > A} at A.

Remark 3.10. For f € L?, the function A — p{x : |f| > A} is called a distribution function. Namely, if
u is a probability measure and f is a random variable, then this precisely corresponds to the definition of a
cumulative distribution function (cdf) in probability theory, equivalently defining the pushforward measure
von R by E — u(f~*(E)). Then, the Radon-Nikodym derivative % is the probability density function

dp
(pdf) of f.
Definition 3.6. Define the symmetric decreasing rearrangement A* of a finite measure A < R" to be

the ball in R" with the same measure as A. Given f > 0 € L, the symmetric decreasing rearrangement
of f is the unique positive radial function f*(r) such that

0
f*(r) :/o Xl fl>ayx (1)dA.
Note that X (x| f>ayx(r) = Viffr € {x : |f| > A}*, ie. f*(r) is the largest height A of f for which the
radius of {x : |f| > A}* is greater than or equal to r.

Remark 3.11. Intuitively, one can think of slicing the peaks of the function f and putting them into the
center, so that the value of f*(r) is the value of A at which the volume of the peaks above A of f exceeds the
volume of the ball of radius r.

Remark 3.12. The defining quality of the symmetric decreasing rearrangement is that u{x : f > A} =
u{x: f* > A}
Lemma 3.14. |f*|, = [|f] -

Proof.
|vm=/’nW*MxJ>AMA=/“nV*Mxv*>M=Lﬁm
0 0

3.6.1 Exercises

Fall 2010 Problem 4 Let T : C.(R) — C.(R) be a linear transformation such that

ITfloo < | flloo, p{x:|Tf(x)] > A} < f/\|1

Show that [Tf]l2 < |If -

Proof. This is a consequence of the Marcinkiewicz interpolation theorem, and we reproduce a
sample proof below. For f € C.(R), write f = g + h, where g = f)(|f‘<% + %le\zé' Then,

(oIl > Ay e o il > Sy o txcIgl > D),
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where the latter set is empty. Then, by the first bound, u{x : |Tf| > A} < u{x : [Th| > 4}. Writing
the layer-cake decomposition, we now have

o0
an|z::/Q pAP g - TS| > A}dA

@ A
< / pAP " u{x o |Th| > 5 HdA
0

0
< / pAP=2 / I dydA
0

oo A
</0 /p"p U = fXifi<g = FXip1 4 dxdA

2If|
<// p)»p_zlf—éld)\dx
0 2

/V%4ﬂ+mmxsv5
]

Fall 2020 Problem 5 Suppose f € L! is such that [ |f| < +/|E| for all Borel E < [0, 1]. Show that
felLPforl < p <2, butnot necessarily in 12

Proof. Note that | f[1 < 1, and moreover,

IM:H>MM</;

sl Iff = AR

[ 1A > A}l < o5

Then, by the layer-cake decomposition, for p > 2,

o 0
fps [ Afpacs [ pr s Mr <1 [ part <o
Ifl<1 ! )

i.e.

whenever p < 2. Moreover, % is in L'([0,1]) but not L2([0,1]), and since v/x — /¥ < \/x —y for
all x > y, the inequality holds on open intervals, and therefore on all open sets, so by regularity of
the Lebesgue measure on [0, 1], it holds for all Borel sets E < [0, 1]. O

3.7 Density Arguments
Density arguments typically rely on one of the following theorems or statements:

(a) Stone-Weierstrass: A *-subalgebra of C(X) for compact Hausdorff X that separates points
and does not vanish at any point is dense in C(X).

(b) If u is Borel, characteristic functions of open intervals are dense in characteristic functions
of measurable sets, and the span of characteristic functions (of measurable sets) are dense in
LP,1<p<o0.

(c) If X is an LCH space and y is a Radon measure, C.(X) is dense in LP(X, ) for 1 < p < 0. In
particular, this holds for every locally finite measure on IR".
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3.7.1 Exercises

Spring 2020 Problem 4 Show sin(x") - 0in L*([0,2]).

Proof. Note that sin(x") — 0 on [0,1), so by dominated convergence, fol fsin(x") — 0. For the
interval [1, 2], we appeal to a density argument, showing that the statement is true whenever f is
the characterstic function of a closed interval. Indeed, for1 <a < b <2,

b vy 1 1
/a sin(x")dx o sin(y)dy A—np—  A—maT
as n — o0, so by density, the argument is complete. O

Spring 2020 Problem 1 Suppose f € C satisfies [ f (x)e~™**dx = 0, for any t > 0. Show that f
is odd.

Proof. We first reduce the problem by defining the even function g(x) = f(x) + f(—x) and showing
that g is identically zero, given that [, g(x)e_“(2 = O for all t > 0. By symmetry, this implies that
I g(x)e*tx2 = 0 forallt > 0. Suppose f is supported on [—R, R]. Note that the algebra generated

by the functions {e™ : t > 0} on [0,R] is a unital algebra that separates points, so by Stone-

Weierstrass, it is dense in C([0, R]) in the uniform norm. In particular, one may take an element
a in the algebra such that |a — g||c < €. Note that the assumptions of the problem imply that

[ga=0,s0
o0
| gdx < Relgl —0

as € — 0. Thus, g is identically zero, i.e. f is odd. O

3.8 Convexity

Definition 3.7. A function f : X — R is convex if f(tx + (1 —t)y) < tf(x)+ (1 —1t)f(y) for all
tel0,1],x,y € X.

Theorem 3.15 (Geometric Hahn-Banach). If X,Y are two closed convex disjoint subsets, then there
exists a hyperplane that separates X, Y.

There is a very deep fact that relates convexity to the weak topology.

Corollary 3.15.1. A convex set A is closed iff it is weakly closed.

Proof. If A is weakly closed and x, — x, then ¢(x,) — ¢(x) for all bounded functionals ¢, i.e.
x € A. Conversely, if A is convex and closed, we show that A° is weakly open. Indeed, for a € A,
by geometric Hahn-Banach there exists a separating hyperplane between a and A, which precisely
implies that A° is weakly open. O
Theorem 3.16 (Jensen's Inequality). If f is convex, then f(f u(x)dx) < § f(u(x))dx.

Proof. Prove for sums by the definition of convexity, and pass to the limit into the integral. O
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Definition 3.8. The subdifferential of a function f : R" — R at xq is

0f(x0) == (y € R: f(x) > f(x0) +y-(x—x0) YxeR"}.

Proposition 3.5. Given some regularity, a convex function can be characterized by the following state-
ments:

(a) If f € C2(R"), f is convex iff D*f is everywhere positive semi-definite.
(b) If f € CHR"), f is convex iff f(y) = f(x) + V f(x)(y — x), i.e. its epigraph is convex.
(c) f:R" — Ris convex iff for all x, 0f (x) + @.
Proof. We prove the third statement. If f is convex, Hahn-Banach guarantees the existence of
a supporting hyperplane, which defines a subdifferential. Conversely, taking ¢ € df(xs), Xx =
ay + (1 —a)x, since
fy) = fxa) +8- (y = xa),
f(x) = f(xe) + 8- (x = xa),
multiply the first equation by «, the second by 1 — « and add to get

af(y) + (1 =a)f(x) = f(Ya)-

Lemma 3.17. A convex function f attains a minimum. x is a minimum of f iff 0 € 0f (x).
Here is an important theorem regarding the regularity of convex functions.

Proposition 3.6. A convex function f : R" — R is differentiable except on at most a countable set.

Proof. For brevity we show that the set of nondifferentiability has Lebesgue measure 0. We show
that convex functions are locally Lipschitz. We assume without proof that all convex functions on
R" are continuous. First, suppose f is bounded above on B(xg, ). Then, f(xg) = f (M) <
Tf(x) + 3 f(2x0 — x), ie. f(x) = 2f(x0) — f(2xo — x), since 2xp — x € B(xo, ), so f is bounded.
Then, For x, y € B(xo, %), set

(x—y)
Uu=x+z ,
2|x—yl
and suppose f is bounded by M on x,y,u € B(xo,0). If & = 2\|x5—y|| ,
et a1
Then,
1 o fuw) = fly) _ 4M
— < — = I T x—y.
F0) = f) < —f) + ——fl) = fy) = DI < ey
Since f is locally Lipschitz, Rademacher’s theorem implies that f is differentiable a.e. O

Definition 3.9. A function f : X — R is lower (upper) semi-continuous if the epigraph (hypograph)
{(x,t) € X xR : f(x) = (<)t} is closed. Alternatively, f is lower (upper) semi-continuous at xq if
f(x0) < liminfyx, f(x) (f(x0) = limsup, ,, f(x).)
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Remark 3.13. Think of upper-semicontinuous functions as functions with only discontinuities that can
jump up and lower-semicontinuous functions with discontinuities that can only jump down.

Proposition 3.7.  (a) Indicator functions of open (closed) sets are lower (upper) semi-continuous.
(b) Sums/products of lower/upper semi-continuous functions are lower/upper semi-continuous.

(c) Arbitrary infima (maxima) of upper (lower) semi-continuous functions are upper (lower) semicontin-
Uous.

(d) A lower (upper) semi-continuous function on a compact set K attains a minimum (maximum).

(e) (Baire’s Theorem) A lower (upper) semi-continuous function on a metric space X is the monotone
limit of an increasing (decreasing) sequence of continuous functions.

Proof. We prove Baire’s theorem. WLOG, suppose X is compact and f is upper semi-continuous.
Define

fu(x) = sup(f(y) — nd(x, y))-
yeX
Clearly, f < f, for all n. Note that x — d(x,y) is continuous, so f, is the supremum of a se-
quence of continuous functions and therefore lower semi-continuous. Moreover, f, is upper semi-
continuous (since f is), as for x,, — x,

fu(x) = sup(f(y) —nd(xm,y) +n(d(xm, y) —d(x,y))) = limsup sup(f (y) —nd(xm, y)) = lmsup fu(xm).
y m Y m

Thus, f, is continuous. Clearly, f, is monotonic. Finally, as n — 0, it is easy to see that f,,(x) —

X. ]

Remark 3.14. The main reason we care about semicontinuity is in the context of optimization problems.
Consider a function F : X — R on a Banach space that is bounded below. Does there exist a minimizer
of this functional? Even if the functional is coercive, i.e. grows at oo, we need some kind of compactness
to obtain a minimizer. If X is reflexive, a minimizing sequence has a weakly convergent subsequence.
Then, it suffices for F to be weakly lower semicontinuous for a minimizer to exist. Moreover, since
F is by assumption lower semicontinuous, if F is convex, one may then conclude that F is weakly lower
semicontinuous. This leads to the following lemma:

Lemma 3.18. If X is a reflexive space and F : X — IR is a coercive, convex, lower semicontinuous
functional, then there exists a minimizer for F.

In fact, there is a partial converse to this statement.

Theorem 3.19 (Tonelli). If ¢ is continuous, a functional F : u — [ ¢(x,u)dx is weakly lower semi-
continuous on LP(R"), 1 < p < oo, and weak-* lower semicontinuous on L*(R") iff u — ¢(-,u) is
convex.

Proof. The backward direction is immediate from the lemma above. Conversely, pick u(x) to be
an oscillating function between a,b € R™ so that u,(x) := u(nx) = ta + (1 — t)b, the average of u.
Then, ¢(u,) = tp(a) + (1 — t)¢(b), so on a finite measure set (),

H(Q)p(ta+ (1-0) = [ glta+ (1 DB)x < p(O) limyinf [ Glua)dx = p(C9(a) + (1~ Dp(B)).

O
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3.9 Lebesgue-Radon-Nikodym Theorem

We know that f > 0 € L'(X) defines a finite measure y on X by u(E) = [; fdx, and likewise an
arbitrary f € L! defines a signed measure. Turns out, the converse of this statement is true, and a
finite measure gives rise to an integrable function on a measure space.

Definition 3.10. Let X be a measure space, and let i, v be two measures. We say
u < v (uisabsolutely continuous with respect to v)
if v(E) = 0 implies u(E) = 0. Moreover, we say
uLv (pandvare mutually singular)

if X = A u B, where A, B are disjoint, y is supported on A, and v is supported on B. A measure v
is said to be discrete with respect to y if v is supported on at most a countable set of elements, each
with positive measure, and v L u. One calls a measure singular/absolutely continuous/discrete if it is
singular/absolutely continuous with respect to the Lebesgue measure .

Example 3.1. Any discrete measure is singular. The measure given by A — [, fdu, where f is the Cantor
function, is an example of a non-discrete singular measure.

Definition 3.11. An atom in a measure space (X,u) is a set A s.t. u(A) > 0, and B & A implies
#(B) = 0. An atom defines an equivalence class [A] where any two sets differ by a null set. If a o-finite
measure space consists only of atoms, it is called atomic.

Lemma 3.20. In an atomic measure space, there are at most countably many atomic classes.

Proof. Each atomic class is disjoint and has positive measure, so since X is o-finite, we are done.
O

Example 3.2. A measure on [0, 1] that takes the value 1 on co-countable sets and 0 on countable sets is
atomic but not discrete, with one atomic class.

Lemma 3.21 (Absolute Continuity). If u is a finite signed measure and v is a measure, then y < v iff
forall € > 0, there exists 6 > 0 such that |y (E)| < € whenever v(E) < 6.

Proof. The backward direction is trivial. For the forward direction, proceed by contradiction.
Then, for some € > 0, for all & = %, there exists an Ej such that [u(Ex)| > € but v(Ey) < .
Then, by the Borel-Cantelli lemma, v(limsup E;) = 0 = pu(limsup E) = 0. But this is impossi-

ble since
o0

MO UEB) = m(JE) = e

n=1k>=n k=n

O]

Now, notice that f € L!(X) defines an absolutely continuous measure on X. Lebesgue-Radon-
Nikodym states that in fact all absolutely continuous measures arise in this way.

Theorem 3.22 (Lebesgue-Radon-Nikodym). Let (X,v) be a o-finite measure space. Then, if y is a
o-finite signed measure such that u < v, there exists f € L'(X) such that

WE) = | fav,
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and such an f is defined uniquely a.e. Z—Z := f is called the Radon-Nikodym derivative of y w.r.t. v,

Moreover, if y is not absolutely continuous, then, u = pq + pp, where u1 < v,y L v. Additionally,
U2 = Ug + Us, where py is discrete with respect to v and ps L v.

Proof. In the case of positive measures, we define

f =sup{g: /gdl/ < u(E), E c X measurable}.
E

Corollary 3.22.1.

do _ dpd
Ifv<p<p,then 3 = i dv-

Corollary 3.22.2. If v < py, V2 < o, then
A @) _ du dvy
d(p1®@p2)  dprdpn’

Example 3.3. For a random variable X with an absolutely continuous distribution function F,

. dp*
]E[X]z/QXsz/de = Rxd]i d‘uz/lef(x)dx,
where )
/ f(x)dx = P(X € [a,b]).
is the pdf of X.

Example 3.4. Let X = ([0,1], 1) and p be a Borel measure on X such that u((a,b)) = b> — a* and
n({0}) = pu({1}) = 0.5. Then,

p(E) = 0.5x1eE + 0.5x0cE + /E xdx,

S0

d
p=p1+ 02,01 < ]/l'dl: =Xx,02 =00+ 91,

where 6, is the Dirac delta measure at a.

3.10 Continuous Functions on a Compact Hausdorff Space

Here we list a number of important topological and measure-theoretic results that can be applied
to continuous functions on a compact Hausdorff space X. Sometimes, for sake of generality, we
will want to work over even more general types of sets.

Definition 3.12. Define a topological space X to be locally compact Hausdorff (LCH) if it is Hausdorff
and every point has a base of compact sets.

Example 3.5. Q with the usual topology is a separable Hausdorff metric space, but is not locally compact.

27



Definition 3.13. A subset A — C(X) separates points if for any x,y € X there exists f € A such that
[+ f(y)-

Theorem 3.23 (Urysohn’s Lemma). Let X be a compact Hausdorff space. Then, for any two disjoint
closed subsets A, B of X, there exists f € C(X) such that f(A) =0, f(B) = 1.

Corollary 3.23.1. If X is compact Hausdorff, C(X) separates points.

Definition 3.14. A subset A < C(X) is equicontinuous if for all € > 0, there exists 6 > 0 such that for
dlfed, |x—yl<d — |f(x) - fy) <e.

Theorem 3.24 (Arzela-Ascoli). A subset of C(X) is relatively compact iff it is equicontinuous and bounded.
Corollary 3.24.1. If A = CY(X) is bounded, A is relatively compact in C(X).

Theorem 3.25 (Stone-Weierstrass Theorem). If A = C(X) is a unital C*-algebra (i.e. A is closed under
conjugation), A is dense in C(X) iff it separates points.

In fact, one has the following generalization:
Corollary 3.25.1 (Stone-Weierstrass). If X is a locally compact Hausdorff space, then a subalgebra A c

Co(X) is dense iff it separates points and if there is no x € X such that A vanishes on x.

Proof. Here is a sketch of the proof: you show that for f,g € A, |f| € A, min(f,g) € A,max(f,g) €
A. Then, you construct a sequence of functions g, that match f on certain points and are above
it otherwise and use local compactness to cover X with those functions. Then, do the same with
those functions from below to conclude. O

3.11 Riesz Represenation Theorem and Convergence of Measures

In this section, our goal is to connect the regularity properties of continuous and integrable func-
tions, which will require some restrictions on the spaces and measures that we're dealing with.

Our goal is to build up to the Riesz Representation theorem, which provides a direct description
of the dual of C(X).

Definition 3.15. A Borel measure y is called a Radon measure if y is finite on compact subsets
(f.o.c.s.), inner regular on open sets, i.e.

u)= sup  p(K)

KcU,K compact

for U open, and outer regular on Borel sets, i.e.

‘M(O) B Ochltlfopen 'u(u)

for O Borel. If y is both inner and outer regular on Borel sets, y is called regular.
Remark 3.15. Note that a reqular measure is a slightly stronger condition than a Radon measure.

Remark 3.16. A Radon measure p on a LCH space X is in fact inner regular on all o-finite sets. Thus,
a o-finite Radon measure on an LCH space X is regular. This shows that for o-finite measures on LCH
spaces, there is no difference between Radon and regular measures.

Theorem 3.26. If X is an LCH space s.t. every open set is o-compact, then every f.o.c.s. Borel measure is
Radon, and therefore also regular (since o-compact + finite on compact subsets = o-finite).
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Corollary 3.26.1. If X is a separable LCH metric space, every f.o.c.s Borel measure is reqular.

Corollary 3.26.2. If X is a complete separable metric space (i.e. a Polish space), every f.o.c.s. Borel
measure is regular.

Remark 3.17. The condition that every open subset be o-compact is important, as there exists a separable
LCH o-compact space for which this does not hold.

Corollary 3.26.3. Every f.o.c.s. Borel measure on R" is reqular.
Definition 3.16. The (total) variation of a signed measure y is given by the Jordan decomposition
||(X) = ut(X) — = (X). More generally, if u is complex,
(X) =sup Y [u(A)],
T Aen

where 1T is a countable partition of X.

Definition 3.17. If X is a topological space, define C.(X) < Co(X) < Cy(X) to be the spaces of compactly
supported, vanishing at infinity, and bounded functions on X, all with the supremum norm. A function f
is said to vanish at w if for all € > 0, | f| < € outside a compact set K < X.

Lemma 3.27. If X is an LCH space, then Co(X), C,(X) are Banach spaces, and the closure of C.(X) is
Co(X).

Proof. The first two claims directly follow from the fact that X is locally compact. The second is a
simple consequence of Urysohn’s lemma. O]

Corollary 3.27.1. If X is compact, C(X) = Co(X) = Cp(X) = C¢(X).

Theorem 3.28 (Riesz-Markov-Kakutani). If X is an LCH space, then Co(X)* = M,;(X), the space of
complex Radon measures with finite variation on X (i.e. measures such that Re y,Im p are Radon), under
the equivalence

0 = [ Fgx),

and with ||p| = |pue|(X). Moreover, positive functionals on Co(X) are isometrically isomorphic to finite
Radon measures.

Corollary 3.28.1. M, (X) equipped with the total variation norm is a Banach space.

Proof. By Riesz representation, since M;(X) = Co(X)*, and a dual of a space is always Banach,
we conclude. [

Corollary 3.28.2. If every open set in X is o-compact, then Co(X)* = My(X) = By(X), the space of
finite complex Borel measures on X with the total variation norm. In particular, this is true for separable
LCH metric spaces X.

Intuitively, we conclude that the necessity of working over a separable metric space is what makes
Radon and Borel measures equivalent, and the LCH property is what is required by the Riesz
Representation theorem itself.

Example 3.6. Any bounded linear functional on Co(IR") is given by a finite Borel measure.

Proposition 3.8. If X is a compact Hausdorff metric space, C(X) is separable.
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Proof. Let A — X be a dense countable subset and consider the countable unital Q-subalgebra
generated by 1 and h,(x) = d(a, x) for a € A. It clearly separates points, so by Stone-Weierstrass, it
is dense in X. O

Proposition 3.9. If u, is a bounded sequence of Borel measures on a compact Hausdorff metric space X,
there exists a Borel measure y and a subsequence i, such that

| st [ s
forall f e C(X).

Proof. Since C(X) is separable, by Banach-Alouglu, a bounded ball in C(X)* =~ B(X) is weak-*
sequentially compact. O

Proposition 3.10. If X is a compact metric space, the set M of probability measures on X with the weak-*
topology is a compact metric space.

Proof. M is homeomorphic to the subset of positive linear functionals of norm 1 with respect
to the weak—* topology. Since C(X) is separable, by Banach-Alaouglu, this subset is weak-* se-
quentially compact and the weak-* topology is in fact metrizable. Thus, M/ is a compact metric
space. O

While we have considered a lot of different kinds of convergence for functions, the equivalence
of functions and measures (due to Radon-Nikodym) suggests a number of definitions for the con-
vergence of measures.

Definition 3.18. One says that ji, — p strongly or setwise if j1,(A) — u(A) for all measurable A. One
says that u, — u vaguely (or weak-*) if for all f € Co(X), [ fdu, — [ fdu. Similarly, one says that
in — p weakly of for all f € Cp(X), [ fdu, — [ fdu.

Remark 3.18. Weak convergence is a misnomer, since C,(X) + M.

It is easy to see that strong convergence implies weak and weak-* convergence. The following
theorem provides a partial converse.

Theorem 3.29 (Portmanteau Lemma). Given a metric space X, TFAE:
(@) pp — u.
(b) liminf 1, (O) = u(O) for all open O c X.
(c) limsup u,(K) < u(K) for all closed K < X.
(d) Uminf [ fdu, >
(e) limsup [ fdu, < [ fdu for all upper semicontinuous bounded above f.

(f) limpu,(A) = u(A) forall A with u(0A) = 0.

H
[ fdu for all lower semicontinuous bounded below f.

Proof. weshow (a) = (c). For K closed, define K, = {x : d(K, x) < 1}, and let F; be a continuous
function that is 1 on K and 0 on K§,. Then,

lim sup p,(K) < limsup/deyn — /dey < u(Ky).

n
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Taking n — oo completes the proof. By taking complements, one sees that (b) is equivalent to (c).
Using Baire’s theorem to monotonically approximate upper (lower) semiicontinuous functions
yields equvialence with (d) and (e). Together, (b) and (c) imply (d), since

lim sup pn(A) < u(A), liminf p, (A%) = u(A°).

To see that () — (a), note that by Fatou,
oo 1
liminf/fdyn = liminf/ Pn{x > A} > / liminf p,{f > A} > /y{f > A} = /fdy
0 0
and replacing f with —f completes the proof. O

Definition 3.19. For f : (X, u) — (Y,v), the pushforward measure associated to f on Y is ji¢(B) :=
u(f~(B)).
Example 3.7. If f(x) = c is constant, y is the Dirac measure on c.

Remark 3.19. The defining property of pushforward measures for g : Y — Z is

/gOfu = /gdﬂf

Definition 3.20. We say f, — f in distribution if s, — py.
In fact, we have an analogue of Arzela-Ascoli for measures.

Theorem 3.30 (Prokhorov’s Theorem). Let S be a separable metric space, and M1 (S) be the space of
Borel probability measures on S. Then, a subset A — M (S) is weakly precompact iff it is tight. Moreover,
if S is complete, then the weak topology is completely metrizable.

Proof. If A is tight, the rougly speaking, one can pick a countable subsequence of sets and use a
diagonal argument to find a convergent subsequence on those sets, and extend it to a weak limit
by regularity of the measure.

Conversely, suppose A is weakly precompact. Note that K < S is compact iff

N; 1
K={UJBx )
j i=1 J

where {x;} is a countable dense subset of S. If for every j we can find an N; such that

N
j 1 1
H (H B(x;, ])) >1-(1- 5)6

for all 4 € A, then K as above would satisfy #(K®) < € for all 4 € A. If not, then there exists a j
such that for all N; there is a sequence of measures j; — v such that

N; 1 1
223 (lLJl B(xi/ ;) <1- (1 — E)e

But picking N; to cover S in the limit, we then get v(S) <1 —(1— %)e, a contradiction. O
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3.12 Measure Theory
Lemma 3.31 (Borel-Cantelli). (a) If >, u(Ay) < oo, then p(limsup A,) = 0.
(b) If p is a probability measure, >, y(An) = 00, and p(Ar 0 Aj) = u(Ax)p(A;)), then y(limsup A,) =
u(X).

Proof. We prove (b). Indeed, it suffices to show that limsup,, u([),=n AY) = 0, as

p(limsup A,) = u (ﬂ U An> > liminf p (U An> =1 —1imnsupy (ﬂ A;) .

N n=N n=N n=N

Now, since the A, are indepenent, one can easily check that
u(Ag 0 Aj) = p(X) — p(Ax v 4j) = w(X) — p(Ax) — u(Aj) + u(Au(Aj) = u(Au(4j),
50 J(Muzn A7) = TTiin (1= 1(An)) — 0, since 3log(1 — p(An)) ~ = 2 p(An) = —o0. O

Here are some common counterexamples used in measure theory:
Example 3.8. (a) The Cantor set C - it is a closed nowhere dense subset of [0, 1] of measure zero.
(b) The fat Cantor set Cy - it is a closed nowhere dense subset of [0,1] of measure a € (0,1).

(c) Define the Cantor function as follows - let ¢ : C — [0, 1] be defined by replacing all the 2’s in the
expansion of a number with 1's and extending the function to be locally constant on the remaining
intervals. Then, f is monotonic uniformly continuous (in fact, Holder continuous) but not absolutely
continuous.

(d) If C(x) = c(x) + x, then C(x) is a homeomorphism between [0,1] and [0,2], as it is a bijective
continuous map from a compact to a Hausdorff space. In particular, f maps Borel sets to Borel sets,
and if N < C(C) is a nonmeasurable set, f~(N) < C is a Lebesque measurable set, but not Borel
measurable set, as f(f~'(N)) = N is not Borel. Moreover, Xf-1(n) s a Lebesgue but not Borel
measurable function.

(e) Every subset of a null set is Lebesgue measurable since the Lebesgue measure is complete. Moreovet,
by an analogue of the Vitali set construction, every positive measure set contains a nonmeasurable
subset.

How does one formally construct a measure? That is the question answered by the Caratheodory
theorem.

Theorem 3.32 (Caratheodory Extension Theorem). Let A be an algebra (i.e. closed under finite inter-
sections and complements) of subsets of a set X. Then, a premeasure (that is, a measure on the algebra) v
extends to an outer measure p* on P (X), which restricts to a measure y on the o-algebra of yu-measurable
sets, i.e. sets A for which

WH(E) = u*(En A)+ p*(En A%)

forall E € P(X). Moreover, if v is o-finite, y is unique.

Example 3.9. If u is the counting measure on R and v is the infinite measure, then they agree on all cofinite
sets, but not on the Borel o-algebra.
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If two measures agree on a set that generates a c-algebra, do they agree on that c-algebra? Turns
out the answer is yes under certain conditions. There are two theorems that allow us to relax our
hypotheses.

Theorem 3.33 (Monotone Class Theorem). If A is an algebra closed under countable increasing unions
and countable decreasing intersections, then it is a o-algebra.

Theorem 3.34 (Dynkin’s 7t — A theorem). If A is a rt-system, i.e. a class closed under finite intersections,
then the c-algebra it generates is the same as its Dynkin class, i.e the class generated by disjoint unions
and complements in A.

Proposition 3.11. If two finite measures y, v coincide on a class C closed with respect to finite intersections,
then they coincide on the o-algebra B it generates.

Proof. The measures agree on a class generated by C generated by disjoint unions and comple-
ments. ]

Corollary 3.34.1. Two finite measures on a topological space that agree on all open (closed) sets agree
everywhere. In particular, the Lebesgque measure on R" is unique.

Remark 3.20. One cannot relax the assumption to o-finite measures. As a counterexample, consider
m(A) =|AnQ|,n(A) =]An(Qu{V2})

with respect to the counting measure | - |. Since Q is countable, these measures are o-finite and they agree
on the algebra of half-open intervals, but clearly not on all Borel sets, since the restriction to the half-open
intervals is not o-finite. This is because

Theorem 3.35 (Disintegration Theorem). Let X, Y be two Radon spaces (i.e. spaces where every finite
Borel measure is Radon), y € M1(Y), 7t : Y — X be a measurable function, and v = po 7~ € My(X) be
the pushforward measure. Then, there exists a family of probability measures yy € M1(Y) for x € X such
that p. is supported on 7t~ (x) and

[rwaw = [ [ ot

Roughly, Y should be thought of as being "parametrized by X,” with 7t being the projection map.

Proof. Note that for B Y, A c X measurable, the disintegration formula should satisfy

/ )(Bd;t:/yx(B)dv.
n=1(A) A

Using the Lebesgue differentiation theorem, we can then extract y, by defining

1 1
B) := lim / dy =lim ————— / d
‘Mx( ) e—0 V(Ae) m=1(Ae) ABAK e—0 “I/l(ﬂ'*l(Ae)) m=1(Ae) ABAH
over neighborhoods A, that shrink to x. O

Often times, we are interested in measuring the "dimension" of a set. We define the dimension
according to how scaling the object affects its measure. This motivates the following definition.
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Definition 3.21. Let X be a metric space. Define

e 6}
H{(S) = inf ) (diam U;)*
i=1

over all countable covers of S by sets with diam U; < J. We define the d-dimensional Hausdorff mea-
sure to be the Borel measure obtained from the Caratheodory restriction of the outer measure H(S) =

sup;. g Hg(S).

Remark 3.21. Restricting to certain classes of sets U (like open or closed) might change the measures but
does not change the dimension of a set.

Remark 3.22. For d € N one has A% = B,H?, where A\ is the d-dimensional Lebesque measure and B is
the volume of the d-dimensional unit ball.

Definition 3.22. For every set S — X, there exists a unique d € [0, 0] s.t. H* (S) = 0 for d’ > d and «©
for d" < d. We call d’' the Hausdorff dimension of S.

3.13 Oscillatory Integrals

Many times in harmonic analysis, one aims to asymptotically estimate the magnitude of an inte-

gral of the form
/ a(x)e M) dx.

The theory of oscillatory integrals and the method of stationary phase are powerful tools for esti-
mating such integrals. First, one has the trivial bound

I(A) = ‘/jei)“”(")dx < u()).

This bound is achieved iff ¢ is constant, so the decay of this integral is linked to the noncostancy
of ¢. One way to achieve this is to require |¢’| > ¢ > 0. However, that turns out to be not enough.
One additional assumption, for instance, is monotonicity.

Lemma 3.36 (Van der Corput). If ¢ : R — R is smooth, |¢'| = ¢ > 0, and ¢’ is monotonic, then
II(A)] « &

Proof. Integrating by parts and using fundamental theorem of calculus on the second integral,

_ ’ 1 d iAg(x) _ 1 iAp(x) ’ 1 b d 1 iAP(x) . 2 2 o
0= [ gt = ™), s [ =0 w0l ==

a

Corollary 3.36.1. Inductively, one has that
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4 Lebesgue Differentiation Theorem

Here we cover an extremely important theorem that allows us to "differentiate” L? functions. For
this, we first need to introduce a lot of heavy machinery.

Definition 4.1. For f € L}, , define the Hardy-Littlewood maximal function to be
1
H(f)(x) = sup o [ |fld,
xeB | ‘ B
where B is an open ball. In other words, H is the maximal average of f on any ball containing x.
We begin with some basic properties.
Proposition 4.1. H(f) is measurable and finite a.e. Moreover, Hf : L' — LY% is of weak type (1,1).

Proof. Note that {x : H(f) > A} are open, since if sup, g Ilfl [z Ifldt > A, for all points y nearby,
y € B, and so the supremum is also greater than A. We now introduce with a key lemma.

Lemma 4.1 (Vitali Covering Lemma). Given a cover by open balls of a metric space X, there exists a
finite subset By, ..., By, such that 3B,,, ..., 3By, is a cover of X.

Proof. Inductively pick balls of the largest radius disjoint from all the ones currently picked, and
let Y = 3B,, u...u3B,,. If B is one of the balls picked, then B < Y. Otherwise, by maximality B
intersects at least one of these balls B, and so B < 3B;. O

Now, if Ey = {x : H(f) > A}, then for each E, is covered by open balls B, with

1
5 [, a8

so covering a compact subset K — E, by finitely many balls using the lemma, one obtains

d £ 3d
K|l <3 E B, | < — dt,
| | i:ll ”k| A /]Rd |f‘

where we use the fact that the balls are disjoint in the integral over R?. Since the Lebesgue measure
is regular, we are done. Moreover, the weak bound implies that u{f* = oo} = 0, so f* is finite
a.e. O

Corollary 4.1.1. Since H(f) is trivially of strong type (00, ), by the Marcinkiewicz interpolation theorem,
H(f) is of strong type (p, p) for 1 < p < 0.

What follows is a powerful consequence known as the Lebesgue differentiation theorem.

Theorem 4.2 (Lebesgue Differentiation Theorem). If f € L} , for a.e. x,

loc’

lim /B £(y) — F()ldy =o.

xeB,|B|—0
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In particular,

tim [ fyay =

x€B,|B|—0

a.e. Any x for which this holds is called a Lebesgue point, implying that a.e. point is a Lebesgue point of f.
Proof. It suffices to show that the set

E) = {x:limsup

5 L7 —f(x)dy\ > 21)

has measure 0 for all A. Approximating f in L! with a continuous function ¢ with compact support
so that ||f — g[1 < € and noting that the limsup vanishes for continuous functions,

. 1 «
hmsupﬁ ‘/Bf(y) f(x)dy’ <(f—8)"(x) +1f(x) —g(x)].
If
Fy={x:(f-8)"(x) > A}, Gy = {x:|f(x) —g(x)| > A},
then E, < G, u F,. But by Chebyshev and Hardy-Littlewood for f — g, this implies
Bl <16l + 1] < e,

and sending € — 0 completes the proof. Now, for the general case, enumerate the rationals and
apply the proof to the function |f(y) — |, with E = |, E,, where E, is the set where the previous
theorem fails. Then, for x ¢ E,

1 1
g L@ = sy < g [ 170) = ridy -+ £ -,
|B| /B |B| /B
and the proof is complete. O

Corollary 4.2.1. Let dv = dA + fdu be the Lebesgue-Radon-Nikodym representation of v. Then,
v(Er)

lim = f(x).
lm (B f(x)
for any family E, shrinking nicely to x and a.e. x.
Proof. It suffices to prove that
lim ME) =0
r—0 u(Ey)

for a.e. x. WLOG, assume that E, are open balls. We will show that

1 A(B(x,1)) 1
i {reastman DG >

has measure zero, where A contains the support of u. Recall that since A L y, by regularity of A,
one may pick A such that A(A) < e. By the same argument as in the proof of Hardy-Littlewood,
we cover compact subsets K of F; by balls on which

n(K) <37 u(By,) < 3'kA(A) < ke,
k=1

and we are done. O
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Example 4.1. There cannot exist a subset A < [0, 1] such that u(A) < 1 and u(A n B) > Au(B) for
A€ (0,1) and all balls B, as LDT would imply that x4 > € — xa = la.

Corollary 4.2.2. A monotonic function f is differentiable a.e.

Proof. Recall that to any right-continuous, monotone function F there exists an associated Borel
measure yr such that ur((a,b]) = F(b) — F(a). The Lebesgue-Radon-Nikodym derivative of this
measure is (up to some minor technicalities) our derivative F'. O

4.1 BV and the Fundamental Theorem of Calculus

A fundamental result from undergraduate analysis is the Fundamental Theorem of Calculus,
which states:

Theorem 4.3. (FTOC)
(a) If f is continuous, F(x) = [ f(t)dt is differentiable and F'(x) = f(x).

(b) If F is an antiderivative of a Riemann integrable function f, then F(b f f(t)

Our goal in this section is to prove the most general version of this theorem.

4.1.1 Bounded Variation

Definition 4.2. A function is said to be of bounded variation (BV) on [a, b] if for any sequence of intervals
as above, Yo | f(bi) — f(a;)| < 0. We define the total variation function Tr of F to be

x) = sup ) |f(b) — f(ai)l-

bu=xi—0

More generally, define the class BV (Q) of functions of bounded variation as a subspace of L' such that
the total variation

V(u) = sup/ u div(¢)dx < o,
¢ JO

where || < 1 and ¢ is a C* vector field on Q. Note that for ¢ ~
Jo IVuldx = ||Vuly whenever Vu is well-defined.

\Vul’ this gives that V(u) <

Remark 4.1. More simply put, BV (Q) is the space of functions u with norm |u||ry = |u|; + V(u) whose
distributional derivative Du is a finite Radon measure and satisfies

(div(p), uy = (¢, Du,.

This can be seen by defining the action of the linear functional Du according to the above formula on C!,
extending to C° by Hahn-Banach and constructing the appropriate measure using the Riesz Representation
Theorem. Additionally, |Du|rv = V(u).

Remark 4.2. Note that on W'(Q) < BV(Q), |ulrv = |ullwi. In general, however, functions in
WYL(Q) cannot have jump discontinuities since they admit weak derivatives, and so the space BV (Q)
is strictly larger than W1 (QY).

Theorem 4.4 (Helly’s Selection Theorem). Let u, : R — R be a sequence of increasing functions
uniformly bounded in L¥ for p > 1. Show that u, has a subsequence that converges in L?O Jorg <p.
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Proof. Let K be the complement of the set of points of discontinuity of any of the functions, which
is countable and therefore measure 0. Extract a convergent subsequence u,, — u on K. Then,
extend u according to u(x) = limsup, _, u(y). Clearly, u is positive, increasing and monotone. By
regularity of Lebesgue measure, if 1 is continuous at x, u,(q1) < u,(x) < u,(g2) implies as n — o
that

| (%) — u(x)| < sup{|u(q2) — un(q1)], [tn(g1) — u(g2)l},

and for g1, q» close enough to x and n large enough, this is bounded by €. Thus, u,, — u pointwise
except at most on a countable set. Picking a further subsequence, one may assume that u,, con-
verges to u pointwise everywhere. The rest of the argument follows immediately from uniform
integrability and the Vitali convergence theorem. O

Proposition 4.2. BV (Q) is a Banach algebra with the norm | f| gy = |f|1 + V(f), and V is convex lower
semi-continuous on L' and continuous on BV (Q).

Proof. Lower semi-continuity of V follows from Fatou’s lemma, which directly implies that BV ((2)
is Banach. We take as a given that functions in BV (Q) satisfy the chain rule, and therefore the
product rule. This implies that the product of BV functions is BV, so BV(Q}) is in fact a Banch
algebra. O

Proposition 4.3. The inclusion BV (Q) < LY(Q) is compact.

Proof. Recall Rellich-Kondrachov, which says that if () is bounded and p* is the Sobolev conjugate
of p, then W7(Q)) embeds into L7(Q)) for 1 < q < p*, where for g < p* the embedding is compact.
Approximating a BV function u by smooth functions with uniformly bounded derivatives and
applying Rellich-Kondrachov then yields a convergent subsequence in L. O

Remark 4.3. On R, the compact embedding is a consequence of Helly’s selection theorem, since a family
of uniformly bounded monotone functions is precompact and every BV function is a sum of monotone
functions.

1

Proposition 4.4. Monotone functions are differentiable a.e. with derivative in L, .

Proof. WLOG, suppose f : [0,0) — [0,0) is increasing and f(0) = 0. Then, f defines a premea-
sure according to u((b —a]) = f(b) — f(a), which then extends to the corresponding Lebesgue-
Stiltjes measure df by Caratheodory’s extension theorem. Then, by the Radon-Nikodym theo-
rem, one can write g = A 4 p, where A is absolutely continuous with respect to the Lebesgue

measure m. Moreover, by the Lebesgue differentiation theorem, one has that f' = g—;‘q a.e. In par-

ticular, one immediately sees that [ Hb f' < f(b) — f(a), with equality iff p = 0, which implies that
flell O

loc*

Remark 4.4. Lebesgue’s differentiation theorem gives us a unique decomposition of every monotonic func-
tion F = Fac + F; + Fs, where Fac is absolutely continuous (and therefore continuous), Fy is a jump
function, and F; is a continuous singular function with derivative 0 a.e.

It is immediately clear that (bounded) monotonic functions are of bounded variation. One now
aims to obtain a decomposition of a BV function.

Proposition 4.5. F eBV iff F = %(Tp +F)— %(TF — F), where Tr + F, T — F are increasing.

38



Proof. Note that Tr(b) — Tr(a) > |F(a) — F(b)| by the definition of Tr. Conversely, the sum of two
BV functions is still BV. O

Remark 4.5. This is known as the Jordan decomposition of f.

Corollary 4.4.1. Since monotone functions are continuous except at most on a countable set, so are func-
tions in BV ([a,b]). In fact, BV functions are differentiable a.e. (with derivative in L'). One may ask
whether the converse is true, but it is not. Indeed, adding a bunch of Cantor functions alternating accord-
ing to a conditionally convergent series convergent to 0 on intervals with rational endpoints shows that
there exists a function which is differentiable a.e. with derivative in L', but is not BV on any subinterval.

Remark 4.6. On R, we see that BV functions are preicsely those functions whose derivatives are signed
Lebesgue-Stieltjes measures.

4.1.2 Absolute Continuity and FTOC

We want to develop a generalization of the FTOC to Lebesgue measurable functions. For that,
we first need to understand the properties of integrals of L! functions. For f € L!, [ f(t)dt is
easily seen to be continuous, but it is in fact in a stronger class of so-called absolutely continous
functions.

Definition 4.3. A function f is absolutely continuous (AC) on [a, b] if for any finite set of disjoint open
intervals (ag, by), ..., (an, by), a; < bj < aj;1, for every € > 0 there exists & > 0 such that >, |f(b;) —
f(a;)| < € whenever >} |b; —a;] < 6.

From the definition, we immediately see that AC < BV. Moreover, note that for F € BV, the
corresponding signed Lebesgue-Stieltjes measure pr := u; — p—, where p, yu_ are the measures
corresponding to the Jordan decomposition of F, satisfies i « m (where m is the Lebesgue mea-
sure) iff the FTOC holds (since the singular part of the Lebesgue decomposition is trivial). We now
claim that this condition is precisely that of F being absolutely continuous.

Lemma 4.5. ur « miff F is absolutely continuous.
Proof. The forward direction is immediate by applying absolutely continuity to a disjoint union of
open intervals. Conversely, if m(E) = 0, by regularity there exist open U; > U, > ... converging to

E, which are a countable union of open intervals. Then pr(U;) < € for large enough j in the limit
of taking N — oo intervals, so ur(E) = 0. O

Corollary 4.5.1. This arqument directly shows that a continuous function F of bounded variation is abso-
lutely continuous iff m(E) = 0 = urp(E) = m(F(E)) = 0.

To answer the question of whether the two are equal, we first describe a generalization of the
classical FTOC for the Lebesgue integral.

Proposition 4.6. If f is everywhere differentiable and f' € L', then f is absolutely continuous, i.e. the
FTOC holds.

Proof. Find a lower semi-continuous g s.t. ¢ > f'and [ g < [ f’ + €. Define

- | g0t — (F(x) — (@) + 5(x — a).
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For t > x close enough to x, one can ensure that

gt > 1), LSO oy 1y

t—x

Then,
Fy(t) = Fy(x) > (t = x)f'(x) — (t = x)(f'(x) + 1) +5(t — x) = 0.

Since F, is continuous and # > 0 is arbitrary , this implies that F, (b) > 0,i.e. f(b) — f(a) < [, ab g <
[ f + €, and applying the same argument to — f concludes the proof. O

Remark 4.7. The Cantor function shows that differentiability everywhere cannot be weakened to differen-
tiability a.e. However, a nontrivial generalization of this statement lets one relax everywhere differentiability
to f being differentiable everywhere except on at most a countable set.

We now want to classify absolutely continuous functions in terms of BV functions. Clearly, abso-
lutely continuous functions are continuous. WLOG, suppose that for some F € L!, Tr(—x) = 0.
Then, we have the following theorem:

Theorem 4.6. (FTOC, Lebesgue Version) TFAE:
(a) F is absolutely continuous.

(b) There exists f € L' s.t. F(x) = [T f(t)dt.

(c) F is differentiable a.e. with F' € L' and F(b) — F(a) = fab F'(t)dt.

Proof. (b) = (a): This follows from the fact that integrals define absolutely continuous measures
w.r.t. to the Lebesgue measure.

(¢) = (b): Trivial.

(@) = (c): Since AC < BV, F has a derivative f defined a.e. Moroever, we have shown that if F is
absolutely continuous, then yr « m, and so by Lebesgue decomposition, the FTOC is satisfied. [

To summarize, here are the properties of AC and BV functions:

(a) F € BV iff F is the sum of monotone functions iff there exists a Lebesgue-Stieltjes measure
ir, in which case F is continuous except at most on a countable set and differentiable a.e.
with F’ € L. The oscillating Cantor function shows that the converse is not true.

(b) F € BV is absolutely continuous iff yr « m iff the FTOC holds iff F is continuous and m(E) =
0 = m(F(E)) = 0, as the singular part of the Lebesgue decomposition dy; = %dm +dA
is zero. In particular, if F is differentiable except on at most a countable set with F’ € LY Fis
absolutely continuous.

Theorem 4.7 (The Generalized Fundamental Theorem of Calculus). As a consequence of this machin-
ery, we have the following general characterization of the Fundamental Theorem of Calculus:

(a) If f is differentiable everywhere, f' need not be (improper) Riemann integrable (see Volterra function)
or Lebesgue integrable (if f' is unbounded but is improper Riemann integrable).

(b) If f' is (improper) Riemann integrable, then the FTOC holds (by the standard proof). If f' is Lebesgue
integrable, then the FTOC holds. This is not true for a.e. differentiable functions f (see Cantor
function), but is true for functions differentiable except at most on a countable set.
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(c) If f is Lebesgue integrable, then by the Lebesgue differentiation theorem, F(x) = [ f(t)dt is differ-
entiable a.e. with derivative equal to f a.e. In particular, it is equal to f at xo 1ﬁ‘ X is a Lebesgue point
of f,eg. if f is continuous at xq. F need not be differentiable except on a countable set (see d(x, C)
where C is the Cantor set). Thus, if L is the set of Lebesgue points, then L is dense and L has measure
zero (but need not be countable).

Corollary 4.7.1 (Rademacher’s Theorem). Locally Lipschitz functions are differentiable a.e. and satisfy
the FTOC.

Remark 4.8. This theorem sounds a lot less nice than what could be easily remembered. In particular, it
requires some sort of integrability for f'. One approach to this is to generalize the both the improper Riemann
integral and the Lebesgue integral to the Henstock-Kurzweil (HK) integral. If considering HK integrals,
the FTOC can then be simply phrased as: If F is differentiable with derivative f, then

HK/bf(x)dx = F(b) — F(a).

4.1.3 Holder Continuity

Definition 4.4. For an open bounded subset X — R" and k € N, & > 0, define the Holder class C**(X)
to be the space of C* functions with finite Holder norm

Brix)— of
Ul = Iflee + 108 flcon = Ifle+  sup LB =0SW)

< 0
x+yeX,|B|=k Hx _yHIX '

for the Holder seminorm | - |coa. If f € CO*, we say f is a-Holder continuous.

Proposition 4.7. C** only contains constants for & > 1, and CF is the vector space of k-times continu-
ously differentiable functions with the k-th order derivative Lipschitz continuous. In particular, for x < 1
and X bounded C**(X) is a Banach space.

Proof. The characterization of C%! follows immediately from the definition. Notice that Ck* <
Ck whenever a > ’. WLOG suppose k = 0. Then,

() =fWl _
[x =yl

‘al

< [ fllcosllx =y

as [x —y| — 0,s0 Vf is zero, i.e. f is constant. Clearly, the C** norm is a norm. Finally, since
ck (X) is Banach, if f, is Cauchy in Cka it converges to an element f € Ck. Moreover, if |f]coa >
limy, | fu|co«, there exists a sequence of pairs (x, yx) such that

fl) = fly)| _ 2e

Ixe =yl oo — i@

+ | fulcoe < limsup |fulcoe = liﬁn | ful coe,
n

which is a contradiction if that is the sequence of pairs that maximizes |f|co.. Thus, f € C*
and |f|co« < limy |fu|coe. Then, since |fy — fin|coe < €, taking the limit in C¥ yields |f — fu|coa <
limy, |fu — f|coe < €. Thus, we conclude that f, — f in C**, so C** is a Banach space. O

Example 4.2. For 0 < B < 1, f(x) = xP on [0,1] is a-Holder continuous for « < B, but not for & > B,
since
xP —yP
su <
(= y)P
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for o < B - this can be seen since for fixed y, as x — y, the function approaches 0, and xP grows faster than
(x — y)ﬁ since (x —y)P~1 = xP~1. Fory = 0 and a > B, as x — 0, one has |xP|cox — o0.

Example 4.3. Absolute continuity does not imply Holder continuity, as ﬁ (taken to be 0 at 0) is absolutely

continuous on [0, 1], but 1“" — oo forany & > 0as x — 0.

Lemma 4.8. The inclusion Ck* < C*P for « > B is compact.

Proof. The inclusion is clearly continuous, as

fleos < x = yI* 7P| flcon < diam(X)* 7P| flcoa

Moreover, the sequence is uniformly equicontinuous, so by Arzela-Ascoli, there is a uniformly
convergent subsequence, and

B 1_8
\fn = finlcos < [fu = finl Coullfn — fnlloo * — 0
as n,m — oo since f, is bounded in C%4. O

Example 4.4. Holder continuous functions need not be of bounded variation. As an example, consider the
Weierstrass function

forbodd,0 <a<1,andab > 1+ %7‘[. By the Weierstrass M-Test, this function is continuous. Let o, € Z
be the integer closest to b"x, x,, := b"x — «,, and construct sequences xF = (a, £ 1)b™", which one can
check both converge to x. Then,

flxm) — f(x)

xm —X
is an infinite sum, where the first m terms are bounded in magnitude by at most

m—1 m
T Z (ab)" < nézb) 7

n=1

using the fact that cos x has Lipschitz constant 1, and for the tail,

cos(b" ™ mx) = —(=1)%", cos(b" " rtxg) = (—1)%" cos(b" xy41),
so that .
1 2
3 a"(cos(b" mx;) — cos(b" mxg) > (ab)" * cos(Mmi1) , 2
n=m 1+ x4 3

where we used the facts that the sum only has positive terms and took the n = m term and x,,11 € (—3%, 1].
These two inequalities show that

PEZIE) ooty (5 + 015 )

xXh—x

for |e1| < 1and y1 > 1. An analogous argument for x,, shows that

fOm) = (%) _ —(—=1)""(ab)" 12 (§ + "’%bi 1> '

Xy — X
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Given the condition on ab, we have that both sides have different signs and in fact diverge to +c0, so f is
not differentiable at x. Moreover, writing

o0]

fulx) = D b7 cos(b"rx),

n=1

one can show that f is a-Holder continuous for a < —}E—Z. In particular, Wy is an example of an a-Holder

continuous function for all « > 1 that is not Lipschitz.

Example 4.5. Holder continuity is a very "weak” definition of continuity. For example, the Cantor func-
tion is a-Holder continuous with « = ig%. As another example, take the space-filling curves. Let C be

the Cantor set, considered as a topological space, and h : C — [0, 1] be surjective (for example, take the
restriction of the Cantor function C : C — [0,1]). Then, since C is homeomorphic to C x C, one gets a
surjective map

C>CxC—10,1] x[0,1],

which may be extended to a continuous function on [0,1]. Note that such a map must necessarily not be
injective, as it would otherwise be a homeomorphism of a unit interval and the unit square. It thus follows
that space-filling curves derived from the Cantor function are Holder continuous.

4.2 Examples

We now have many different proposed types of continuity, related by the following inclusions on
R:
C! c Lipschitz continuous = AC < continuous and BV c differentiable a.e.

We provide a list of relevant examples:
(a) |x|is Lipschitz but not C! on [-1,1].
(b) +/xis AC on [0,1] since FTOC holds, but not Lipschitz, since its derivative is not bounded.

(c) Cantor’s function is continuous and BV (since it is monotonic) but not AC (since its deriva-
tive is zero a.e.).

1
= 0
sin(3) x4 is differentiable a.e. on [0, 1] but not BV. Similarly, x sin(1) is not BV

d) f(x) = 1
N x
(as its envelope is given by x, and the harmonic series diverges).
(e) The Weierstrass function Wy is Holder continuous for all « > 1 but differentiable nowhere.
(f) ﬁ is AC but not Holder continuous for any a.

Additionally, we may relate the notions of classical, weak, and distributional derivatives as fol-
lows:

(a) A function on R is weakly differentiable with derivative in L! iff it is absolutely continuous.
Thus, AC is the set of functions whose derivatives are also functions. In R"” for n > 2,
u is weakly differentiable iff u is absolutely continuous on lines (ACL). Moreover, if u €
BV(R"), u’ € L.

(b) If u € BV(IR"), then the distributional derivative #’ is a Radon measure. If n = 1, then '
is classically defined a.e. and u’ € LY, but the derivative is strictly weaker than the weak
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derivative (since it is a measure, not a function). For example, the derivative of the Cantor
function is 0 a.e., while the weak derivative does not exist. However, by Radon-Nikodym,
one can write u = Uy + Uj + Us, where 1, € AC, u; is a jump function (that is, a distribution
corresponding to a discrete measure), and u; is a singular continuous function with u, = 0
a.e. For n > 2, u need not even be differentiable a.e., even if u is continuous.

4.3 Exercises

Fall 2013 Problem 12 Suppose f : [0,1] — R is continuous and absolutely continuous on (0, 1].
Show that f is not necessarily absolutely continuous on [0, 1], but that if it is of bounded variation
on [0, 1], then it is absolutely continuous on [0, 1].

Proof. f(x) = x sin% is continuous but not BV on [0, 1], and absolutely continuous on (0, 1] since
it satisfies the fundamental theorem of calculus. Now, if f is assumed to be of bounded variation,
then we can consider the total variation function Tr(;_s), which is by assumption a monotonic
bounded increasing function on [0, 1]. Thus, for any € > 0 there exists a 6 > 0 s.t. Trq_p(1) —
Tra-p(1 —6) < €, ie. the total variation of f on [0,d] is less than e. Then, considering F on

[0,d] and [J, 1], we use absolute continuity on [J, 1] to conclude that F is absolutely continuous on
[0,1]. O

Fall 2016 Problem 1 Show that if f € L! and

. f(x+h)— f(x)]
%%/ I dx =0,

then f = O a.e.

Proof. The clever trick is to use the Lebesgue Differentiation Theorem. Namely,

/d fleh) = f) S Fdx = [ fodx
c h

n -0

as h — 0 implies that f(c) = f(d) if ¢, d are Lebesgue points of f. But a.e. point is a Lebesgue point,
so f is constant a.e., and since it is in L f therefore is zero a.e. O
4.4 Hilbert Space Theory
The following are main theorems and lemmas to be used from the theory of Hilbert spaces:

(a) Every Hilbert space admits an orthonormal basis e;,.

(b) Parseval’s Identity: The orthonormal basis satisfies

w
Z anen|| = [(an) |-
n=1

(c) For every closed convex subset W and any vector v ¢ W, there exists a unique w € W such
that |v — w|| = infew [0 — W/'|.
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(d) For every closed subspace W of V, there exists an orthogonal decomposition of V as V =
Wae W

(e) Riesz Representation Theorem: For any ¢ € V*, there exists a unique v € V such that

p(w) = (w,v).

Proof. We prove the Riesz representation theorem. Let ¢ € V* and consider the decomposition
V = ker ¢ ®ker ¢*. Pick xg € ker ¢ and notice that

¢ ( -4 x°> -0

This implies that
P(x) > ¢(xo0)
X — xp, X0 ) =0 = X,
(v gy 90 = (5 G0
Then, uniqueness is easily checked. ]

4.4.1 Exercises

Fall 2009 Problem 1 Find a closed subset in L2([0, 1]) with no element of smallest norm.

Proof. Let X = {f,}, where f, = +v/n+1 Xjo,11 .Then, |f.[3 = 1, and any subset of f, converges to

0 a.e. Then, if some subsequence satisfied f, — f in L? with || f |2 + 0, it would have a subsequence
that converges a.e., so the subsequence would have to converge to 0. But that is a contradiction,
since [0|]2 # 1. Thus, X is a closed nonempty subset of L2 with no element of smallest norm. [

Fall 2009 Problem 7 Define a unitary operator on a complex Hilbert space, and show that if S is
unitary, then S — AI is invertible for |A| < 1. Finally, show that if one defines

h(A) = (S + AI)(S — AI) 1o, v),

then Re 1 is a positive harmonic function.

Proof. A unitary operator S is one that satisfies (Sv, Sw) = (v, w) for all v, w € V, or equivalently,
one such that SS* = §*S = [. In particular, |SS*| < HS||2 =1,s0|S| < 1.Clearly, if A =0,S — AI
is invertible with inverse S*. If A + 0, S is unitary and > ||S|| = [|S*||, so I claim that

0
-1 _ _c¢—1 _
(S =A™= =S e = RS

is the inverse of S — Al. Indeed it is a well-defined operator, as the series converges absolutely,
since [(AS*)"| < |A/"M|S*|" < (JA]|S])", which is a geometric series that converges, and one can
formally multiply the series with S — AI to check that it yields the identity.

Finally, define h as above. O
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Fall 2010 Problem 6 Let V be the Hilbert space of holomorphic functions f : ID — C such that
f(z) = X, a,2" and ||f| = |[[(n)f|2 < oo, where (n) = +/1+ n?. Show thatL : f — f(1)isa

bounded linear functional on V, find the element g that represents L, and f — Re L(f) achieves
a unique maximum on the set X = {f : | f|| <1, f(0) = 0} and find this maximum.

Proof. a) Clearly, L is a linear functional. Then, by Cauchy-Schwarz,

L] = Y™ (w2 F ) < [y~ Lallf] < (£

b) We want to find g € V such that
f) = 9 = 2mPf8.
n

In particular, note that

Z ay = f(1) = Z”n<n>2§r

so setting g(n) = (n)~2, we get that g = > g(n)z" € V represents L. Note that ¢ € V by direct
computation.

c) To show that Re(f(1)) achieves its maximal value on X, we use the representation of the linear
functional. If |f| < 1 and £(0) = £(0) = 0, then Ref(1) < |f(1)| < [<ny, 2l Let Let f = g —1.
Then, [f(1)] = |f], f(0) = O, |f]| = +/llgl* =1 < 1. One may use Cauchy-Schwarz to show
uniqueness, thus completing the proof. O

Let E c L%([0,1]) be a closed subset such that E = C([0,1]). Show that E is finite dimensional.

Proof. The proof roughly follows in 4 steps. First, notice that by Holder, | f|> < | f|l« for all f € E.
Next, consider the inclusion (E, || - |2) = C([0,1]). If f, — fin L?and f, — ¢in L®, then f = ¢
a.e., so by the closed graph theorem, the inclusion is continuous, i.e. |f|» < C|f]2. Now, for any
f € E, evaluation at x € [0,1] is a continuous linear functional, so by Riesz representation on the
Hilbert space E, for some gx € E, f(x) = (f,gx) and so gx(x) = |gx[5 < C|gx]2, i e. |gx]2 < C.
Then, for any orthonormal basis f; of E, by Bessel’s,

M fix) = g+13 < €2,

i

so integrating on both sides yields |I| < C?, i.e. E is finite-dimensional. O

5 Functional Analysis

Here are some important results and problems from functional analysis.

Theorem 5.1 (Hahn-Banach). Let V be a normed vector space and W < V be a subspace. If ¢ : W — C
is a linear map (not necessarily bounded) that is bounded by a seminorm p : V. — R on W, then ¢ extends
toamap ® : V — C bounded by pon V.
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Corollary 5.1.1.  (a) If W < V is a closed subspace and x € V\W, there exists ¢ : V — C that vanishes
onW, |¢| =1,and ¢(x) = 1.

(b) Every continuous functional W < V extends to a continuous functional of the same norm on V.

(c) Geometric Hahn-Banach: If A, B are two closed convex disjoint nonempty subsets of V, then there
exists a linear functional ¢ : V — R and some c € R such that sup , ¢(x) < ¢ < infg P(x), i.e.
A, B are separated by the hyperplane ¢~ (c).

(d) Themapi: X — X** is injective and isometric.

Theorem 5.2 (Open Mapping Theorem). Let T : X — Y be a continuous linear map between Banach
spaces. Then, either T is surjective and open, or the image of T is a set of the first category in V.

Theorem 5.3 (Closed Graph Theorem). If T : X — Y is a map between Banach spaces then if {(x, Tx)} <
X x Y is closed, then T is continuous.

Theorem 5.4 (Uniform Boundedness Principle). Consider a family of bounded operators T,, : X — Y
between Banach spaces such that for each x, | Tyx| < Cy for all « for some constant depending on x. Then,
|Tx| < C for some C for all «.

Proof. Consider the sets X,, = {x : sup, |Tax| < n}. By the Baire category theorem, one of these
sets X,, contains an open ball B(x, €). Then,

sup || Tau| = sup Ta(x0 + €u) — Taxo - 2n
flu]<1 Jul<1 € €
O
Theorem 5.5 (Banach-Alaoglu). If B is a Banach space, then the unit ball in B* is weak-* compact.
Proof. Define By := {z € C : [z| < |x[}, and consider A := [],cp( ) Bx, which is compact as

a product of compact spaces by Tychonov’s theorem. Then, if B* is the unit ball in the weak—*
topology, the map @ : B* — A given by ®,(¢) = ¢(x) is a homeomorphism onto a subset of A. By
Hahn-Banach, the map is injective, and it it clearly continuous with respect to the weak—* topol-
ogy. Finally, it easily checked that the image is closed in A and f,, — f weakly iff ®(f,) — ®(f),
so the map is a homeomorphism. Thus, B* is homeomorphic to a compact set and is therefore
compact. O

Often times, one wants to show certain types of compactness/weak compactness. Here we pro-
vide an overview of the conditions necessary to obtain such result, namely, considering the con-
ditions of separability and reflexivity.

Definition 5.1. B is reflexive if the isometric embedding into the second dual i : B — B** is a Banach
space isomorphism, i.e. the weak and weak-* topologies on B* coincide. B is separable if it has a countable
dense subset.

Remark 5.1. The following is an extremely important remark: since the weak/weak™ topology is not
necessarily metrizable, weak compactness and weak sequential compactness are NOT EQUIVA-
LENT.
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Remark 5.2. Moreover, it is extremely important to distinguish the metrizability of the entire space
versus a compact set. For instance, we will show that the weak/weak™* topology is never metrizable on a
space X, but the weak-* topology on the unit ball is metrizable if X is separable. In particular, this implies
that in general, if S is weakly sequentially closed, S is not necessarily weakly closed. However, this
is true, for example, on weakly bounded sets, since in that case the topology is metrizable, or for separable
reflexive spaces.

Remark 5.3. We will use the letter X to denote a general vector space and B to denote a Banach space.
Lemma 5.6. (a) Y is Banach iff L(X,Y) is Banach.

(b) If X* is separable, then X is separable.

(c) B is reflexive iff B* is reflexive.

(d) B is reflexive and separable iff B* is reflexive and separable.

(e) A Hilbert space is reflexive.

(f) X is separable iff the weak-* topology on the unit ball of X* is metrizable.

(g) X* is separable iff the weak topology on the unit ball of X is metrizable.
Proof. We prove (b) and (e). For (b), pick a dense subset ¢, of the unit sphere in B*, and pick a
sequence x, on the unit sphere of B such that ¢(x,) > 3. Suppose that the Q-span of x, is not

dense in B. Then, by Hahn-Banach, there exists a nonzero linear functional ¢ € B* with |¢| = 1
that vanishes on the Q-span of x,. But then, for any ¢,,

[$0n) = gulx)| > 5,

contradicting the density of ¢,.
For (f), if x, is a dense countable subset of the unit sphere, it suffices to define the metric

& 99
P = L G

It is then easy to see that ¢, — ¢ iff ¢y, (x,n) — ¢(x) for all m, i.e. this metric defines the weak-*
topology. (g) follows similarly.

O
Lemma 5.7. The weak/weak—* topology is never metrizable.
Proof. Suppose d is a metric for the topology, consider the U, = {x : d(x,0) < 1}, these are
weakly open and therefore unbounded. But if x, € Uy, |x,| = n, x, — 0, so x, is bounded, a

contradiction. ]

Lemma 5.8. In an infinite-dimensional normed vector space, the weak closure of the unit sphere is the unit
ball.
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Proof. One inclusion is clear - since a convex set is closed if and only if it is weakly closed, B is
weakly closed, and so S¥ < B. Conversely, recall that the weak topology is the coarsest topology
on H, such that the linear functional evaluation maps x — ¢(x) = {(x,¢) are continuous. Thus,
the basic open neighborhoods in the weak topology of some x € H are the sets U = {y € H :
{y—x,¢iy < e€i=1,.,n} For x € B, note that y — x € [)/_, ker ¢;, and since kernels of linear
functionals have finite codimension and X is infinite-dimensional, the intersection of the kernels
is infinite-dimensional and therefore contains a line L = {tv : t € R, v € X} through the origin. In
particular, since |x| < 1,if y —x € L, soy = x + L intersects S (since for t = 0 one has [ly| < 1
and for t large |y| — o0.) Thus, any basic open neighborhood of x € B intersects S, i.e. S is weakly
dense in B. Along with the other inclusion, it follows that S = B. O

Lemma 5.9. If X* is separable, then there exists a sequence x,, € X, ||x,| = 1, such that x,, — x for any
x| < 1.

Proof. Since X* is separable, the unit ball in X is weakly metrizable, so sequential weak closedness
agrees with weak closedness. O

Remark 5.4. It follows that the unit sphere is never weakly closed. If X* is separable, the above lemma
shows that it is also not weakly sequentially closed. However, if X = I', X* = I%°, which is not separable,
and since I' has the Schur property, weak sequential convergence and norm convergence are equivalent, so
the unit sphere is weakly sequentially closed but not weakly closed.

Lemma 5.10. Given linearly independent functionals ¢; € X*,i = 1,..,n of norm 1, and |¢;| < 1,i =
1,...,n, there exists x € X with |x| < 1s.t. ¢i(x) = c;. In finite dimensions this becomes a simple matrix
problem.

Proof. Note that ¢;(x) = c¢; for ¢; + 0 is equivalent to (¢; — %cpj)(x) = 0,71 # j assuming that
¢1(x) = c1. Clearly, such an x exists, as it is in the kernel of finitely many linear functionals in an
infinite dimensional space and can be scaled appropriately to satisfy ¢1(x) = c1. O

Theorem 5.11 (Goldstine’s Theorem). The image of the unit ball under the embedding i : X — X** is
weak-* dense in the unit ball of X**.

Proof. Lety € Bxsx, so that |y(¢)| < |¢|. Notice that {x € X** : |(y —x)(¢;)| <€,i=1,..,n}isa
basic weak-* neighborhood of y in Bxxx. Without loss of generality, one may take {¢;} to be linearly
independent. But by the above lemma, one can find x € Bx such that ¢;(x) = y(¢;),i = 1,...,n s0
i(Bx) intersects every open weak-* neighborhood of y. O
Theorem 5.12. The following are equivalent:

(a) B is reflexive.

(b) Kakutani’s Theorem: The unit ball in B is weakly compact.

(c) Eberlein-Smulian Theorem: The unit ball in B is weakly sequentially compact.
Proof. If B is reflexive, then by Banach-Alaouglu, the unit ball in B is weak-* compact and therefore
weakly compact. Conversely, the image of the unit ball under the isometric embedding is weak-*

closed and and dense in the unit ball of B**, so it comprises the entire unit ball, i.e. i : B — B** is
bijective and thus B is reflexive. O
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Corollary 5.12.1.  (a) If B is separable or reflexive, then the unit ball in B* is weak—* sequentially
compact.

(b) If B is both reflexive and separable, all unit balls are compact/sequentially compact in all weak topolo-
gies.

Corollary 5.12.2. A reflexive Banach space is weakly sequentially complete, i.e. every weak-* Cauchy
sequence converges.

5.1 Unbounded Operators and Adjoints

Definition 5.2. An unbounded operator T : D(T) < X — Y is a linear map defined on a subspace D(T),
called the domain of T. If D(T) is dense in X, T is said to be densely defined. T is said to be closed if its
graph {(x, Tx)} < X x Y is closed.

Proposition 5.1. T : D(T) < X — Y is bounded on D(T) iff D(T) is closed and T is closed.

Proof. A bounded operator is clearly closed and D(T) is closed. The converse follows from the
closed graph theorem. O

Corollary 5.12.3. Thus, closed unbounded operators are never defined on X. One typically works with
densely defined closed unbounded operators.

We now establish a correspondence between graphs and unbounded operators.

Proposition 5.2. There is a one-to-one correspondence

unbounded (closed) operators T on D(T) «— (closed) subspace C of X x Y s.t. ((0,y) e C = y =0),7(C)

Proof. One direction is obvious. The other follows from defining Tx = y for (x,y) € C and check-
ing that this is indeed linear. O

Definition 5.3. A closable operator T is an operator such that the closure of its graph satisfies (0,y) €
C = y = 0. The closure T is the operator corresponding to the closure of the graph of T.

Remark 5.5. Note that the closure T of a closable operator is an extension of the corresponding graph. In
general, there exists a (highly nonunique) extension of any operator. Additionally, the condition of being
closed is weak in the following sense: if T is defined on a dense domain B and A is a dense subdomain, then
the closure of T|a and T|p need not be equal (take, for instance, T to be identically 0 on A and nonzero
somewhere on B). However, it turns out that this distinction disappears for self-adjoint operators.

Example 5.1. The derivative operator % : C1([0,1]) = C([0,1]) — C([0,1]) is a closed, densely defined,
unbounded operator. To see this, let f, € C* be s.t.

(fur f2) — (f,8) € C([0,1]) x C([0,1]).

Then, by a classic result on convergence of derivatives, it follows that f € C' and f' = g. This implies that
CY([0,1]) is not closed in C([0,1]). However, if we replace the domain by C*([0,1]), the operator is not
closed, since there is no guarantee that f € C*.

Example 5.2. The unbounded densely defined operator T : C([0,1]) — L?([0,1]) given by Tf = f(0) is
not closable.
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Definition 5.4. For a bounded operator T : X — Y between Banach spaces, define the adjoint T* : Y* —
X* by T(9) (x) = p(Tx).

For an unbounded densely-defined operator T : D(T) < X — Y between Banach spaces, define
D(T*)={y*eY*:3C =0, |ly*(Tx)| < C|x|x,x € D(T)}.

~

Then, one can uniquely define T* : D(T*) < Y* — X* by T*(¢)(x) = ¢(Tx), which is the Hahn-Banach
extension of T*(¢) to all of X. T* is called the formal adjoint of T.

Definition 5.5. An operator T is called symmetric (or formally self-adjoint) if T* is an extension of T,
and self-adjoint if T* = T. If T is symmetric and its closure is self-adjoint, then T is called essentially
self-adjoint.

Proposition 5.3.  (a) T* is always closed.

(b) T closable < T* densely-defined, in which case T = T**.

(c) (Hellinger-Toeplitz): A symmetric operator T with D(T) = H is bounded.
Proof. 1f T* is densely defined, one can easily check that T** is the closure of T. Conversely, if T is
closable. The other direction is slightly more complicated.

The first and last statement are a direct consequence of the closed graph theorem and the fact that
if (x,, Txy) — (x,Y),

(z,Txp) =Tz, xp) = {z,y) ={Tz,x) — {(z,Tx—y)=0 Vz.
0

Corollary 5.12.4. Since we can always pass from a closable operator to a closed operator, it follows that
T is closed and densely-defined iff T* is. Moreover, this implies that symmetric operators are closable and
densely-defined.

We have seen that closed extensions of operators need not be unique. What about symmetric
extensions of symmetric operators?

Example 5.3. Take T = —02 on L?([a,b]) with Dt = {f € C* : f"(a) = f(b) = 0,n = 0}. It is
easy to see that T is positive and symmetric. In particular, we can define the following extensions on larger
domains:
Top = {f € C7: f(a) = af(b), f'(a) = Bf'(b)}-

It turns out the extension is symmetric iff {a, B) = 1, and in fact, any two such extensions do not have a
common extension. This example shows the importance of boundary conditions in these sorts of problems.
However, there is a unique self-adjoint extension (which is given by the closure T = T** of T), which
occurs iff T is essentially self-adjoint.

Proposition 5.4. If T : X — Y is a bounded linear operator between Hilbert spaces,

ker T+ = ran T*, ran T+ = ker T*.

Proof.
0={(Tx,y) ={x, T*y).
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Corollary 5.12.5. T is injective iff T* has dense image.
Lemma 5.13. A bounded linear map T : X — Y between Banach spaces is injective and has closed range
iff T is bounded below.

Proof. If T is bounded below, then |Tx| > C|x|, so Tx = 0 implies x = 0, i.e. T is injective.
Similarly, if Tx, — y, then x,, is Cauchy, so x, — x, and y = Tx. Conversely, T : X — ranT is an
isomorphism, so by the open mapping theorem its inverse is bounded. O

Lemma 5.14. If T is injective and has closed range, then T* is surjective.

Proof. T : X = ranT < Y is an isomorphism, which induces an isomorphism T* : Y* —
(ranT)* > X*. O
Theorem 5.15 (Closed Range Theorem). TFAE for a closed densely-defined operator T : X — Y:

(a) ran T is closed.

(b) ran T* is closed.

(c) ranT = (ker T*)*.

(d) ranT* = ker T+,
Proof. We remark that

T:A—>B—-C = T*:C*—> B* - A%,

and
T:B—-B/A—-C = T*:C*— (B/A)* — B*.

It suffices to prove that (a) implies (d). Since

T:X —»X/kerT SranT — Y

is an isomorphism,
T*:Y* - (ranT)* 5 (X/ker T)* =~ ker T+ — X*

is an isomorphism, so ran T* = ker T. O

Remark 5.6. The rough conclusion of this section is that T surjective implies T* injective, and T bounded
below implies T* surjective.

Definition 5.6. A subspace W < V of a Banach space is said to be complemented if V. = W@ Z as
Banach spaces, and the projections are continuous.

Remark 5.7. While it is true that V.= W @ Z as vector spaces (because of algebra), the additional re-
quirement that the projections are continuous makes the statement deeper for Banach spaces. Note that in
particular this implies that if W < V is complemented, then W < V is closed.
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5.2 Spectral Theory

Definition 5.7. A Frechet-differentiable function F : U — Y between complex Banach spaces is said to be
holomorphic in U.

Definition 5.8. For an unbounded linear operator T : D(T) < X — Y, the spectrum o(T) < C of T
is the set of A for which (T — AI)™! : Y — D(T) exists and is bounded. p(T) = C\o(T) is called the
resolvent set of T, and (T — AI)~! is known as the resolvent operator of T.

Remark 5.8. More generally, one may define the spectrum of an element a of a unital algebra A over a field
K as the set of A € K s.t. a — A is not invertible.

Remark 5.9. By the closed graph theorem A € o(T) iff T — Al is not bijective.

Proposition 5.5.  (a) If T is not closed, o(T) = C. Otherwise, o (T) < C is closed (possibly empty), and
if T is bounded, o(T) < B(0, ||T|) is nonempty and compact.

(b) A — (T — AI)~" is holomorphic on p(T).
(c) If T is invertible, A € o(T) == A"l e o(T}).

Proof. Note that (T —AI)~! = —A~ (I — %)_1, which has a geometric power series expansion and

is therefore holomorphic whenever A > |T||, so ¢(T) is bounded. Moreover, if Ay € p(T),
(T=A)7"=(T~20)~(A=2A)" = (T—=2A) (I~ (A=2)(T~20)") 7,

which has a geometric power series expansion and is therefore holomorphic whenever [A — Ag| <
1 = Thus, 0(T) is closed and bounded, i.e. compact. Finally, if o(T) is empty, then A —

1(T=Ao)
(T — AI)~! defines a bounded entire function (since ||(T — A)~!| < HTiAH < IHTl\l—IAH for |A| large,
which by Liouville’s theorem implies that it must be constant, a contradiction. O

Remark 5.10. The version of Liouville’s theorem used here is that a bounded entire function with values
in a complex normed vector space is constant. This can be proven using the classical Liouville theorem and
composing with bounded linear functionals, using the fact that the latter separate points.

Definition 5.9. By the open mapping theorem, the operator T — AI may fail to be invertible for three
reasons:

(a) T — Al is not injective. Then, A is an eigenvalue of T, and thus belongs to the point spectrum o, (T).

(b) T — Al is injective and its range is dense in Y. Then, (T — A)~! is an unbounded operator and A
belongs to the continuous spectrum o.(T).

(c) If T — Al is injective but its range is not dense, A is said to belong to the residual spectrum 0.5(T).
(d) The essential spectrum o.s5(T) is the set of A for which T — Al is not Fredholm.
Proposition 5.6. A € 0,,(T) <= A € 0yes(T).

Proof. B
ker T — Al = ran(T* — AI)* + @.
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Example 5.4. (a) Consider the left-shift operator T : I> — I2, i.e.

T((xl,x2, vy )) = (.XZ, X3, eeey )

Note that |T| = 1. The point spectrum must satisfy

T(Xl, ) = (/\Xl, veey ),

50 x, = A" Lxq for n = 2, which has a solution for any nonzero |A| < 1. Thus, 0,(T) = D. Since
A € 0y(T) implies A € 0yes(T*), it follows that o(T) = 0D and 0ye5(T) = @.

(b) Similarly, considering the right-shift operator

T((xl, )) = (0, X1, ),

we get that 0,(T) = @, 0yes(T) = D, and o.(T) = JD.
(c) Consider —A : H*(R") = L*(R") — L?(IR"). Then, solving

(—A-Mf=¢g
equates to solving

(2P -Mf =3
so since f € H*(R"),

1+ EP)g
Aep(—A) e W e [A(RY),

which is true whenever the multiplier is bounded, i.e. A < 0. Thus, p(—A) = (—,0) =
o(—A) = [0, 0).
5.3 Compact and Fredholm Operators
Definition 5.10. TFAE:
(a) A bounded operator T : X — Y between Banach spaces sends bounded sets to relatively compact sets.
(b) If x,, is bounded sequence, Tx, has a convergent subsequence.

In either case, T : X — Y is called a compact operator.
Proof. The equivalence of definitions (a) and (b) is immediate. O

Proposition 5.7. A compact operator T : X — Y sends weakly convergent sequences to strongly conver-
gent sequences. The converse holds true if X is reflexive.

Proof. If x, — x is a weakly convergent sequence, then Tx, — Tx and there is some strongly
convergent subsequence Tx, — y = Tx. Particularly, since every subsequence has a further
subsequence converging to y, Tx, — Tx = y. Conversely, if X is reflexive, let x, be a bounded
sequence. Then, by Kakutani’s theorem, x,, has a weakly convergent subsequence x,, — x. Ap-
plying the same subsequence of a subsequence argument completes the proof. O

Proposition 5.8.  (a) A finite rank operator is compact.
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(b) T: X — Yiscompactiff T* : Y* — X* is compact.
(c) Compact operators form a two-sided ideal in the space of bounded operators.

(d) IfranT is closed in Y, T is a finite rank operator.

Proof. (a) and (c) are clear from the fact that one is dealing with bounded operators. If ran T is
closedin Y, T : X/ker T = ranT is an isomorphism of Banach spaces. Since T is compact, this
would contradict the fact that the unit ball in an infinite-dimensional space is not compact if ran T
is infinite-dimensional.

Suppose T is compact, and consider K = TB(0,1) < Y. Let ¢, = By« be abounded sequence. Then,
¢n |k is bounded and equicontinuous, so by Arzela-Ascoli, there is some Cauchy subsequence ¢,,, .
Then, T* ¢y, is Cauchy, and so converges to some element ¢ € X*. O

Definition 5.11. An operator T : X — Y is Fredholm if dimker T,codimranT < co. dimker T —
codimran T is called the index of T.

Lemma 5.16 (Riesz Lemma). If B is a vector space and V < B is a closed proper subspace, there exists a
unit vector v € B such that d(v, V) = a for « < 1. If B is reflexive, then one may take o < 1.

If K is a compact operator, then K(B(0,1)) is compact, and we know that the unit ball is compact
only in finite-dimensional Banach spaces. One may thus ask to what extent are compact operators
different from operators that have a finite-dimensional image.

Lemma 5.17. For a Hilbert spaces H, the closure of the ideal F(H) of finite-rank operators (i.e. operators
with finite-dimensional image) with respect to the norm topology in B(H) is the ideal K(H) of compact
operators.

Proof. We will use the following characterization of compact subsets of a separable Hilbert space
H :asubset K c H is compact iff it is closed, bounded, and given an orthonormal basis {ex},
there exists an N such that for any u € K, one has >, |{u, ex)|* < €. With this characterization in
hand, one may simply define the sequence of finite rank operators T,,u = >} _,{u, e )ex, and the
tail condition then guarantees precisely that T, — T in norm. Conversely, one may note that if
T, — T is a sequence of finite-rank operators, then T,,B(0, 1) is totally bounded, and since T,, — T
in norm, TB(0, 1) is totally bounded, therefore precompact. O

Remark 5.11. By the same arguments, one may conclude that the ideal K(H) is closed in B(H) in the norm
topology.

Remark 5.12. This is not true in general for operators T : X — Y between arbitrary Banach spaces X, Y.
Spaces that satisfy the conditions of the lemma are said to satisfy the approximation property (AP).

Lemma 5.18. If T : X — X is compact, T — Al is Fredholm.

Proof. T is a multiple of the identity when restricted to ker(T — AI), so it has to be finite-dimensional

some x, such that (T — AI)x, — 0, x, + 0, Tx,, — v + 0, one has (T — AI)Tx,, — y = 0, which a
contradiction. Thus, T — Al is injective and has closed range. If T — A[ is not injective, apply the
argument on X/ ker T and pull back on the image. O
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Theorem 5.19 (Spectral Theorem for Compact Operators). If T : X — X between infinite-dimensional
Banach spaces is compact, 0 € o(T) — 0, (T), each eigenvalue has finite multiplicity, o(T) is countable, with
the only possible limit point being the origin.

Proof. We show o(T) = 0,(T). If not, T — Al is injective but not surjective. Define Y;, = ran(T —
AI)", and notice that since T — A[ is injective, all these have closed range by the lemma. By the
Riesz lemma, pick a sequence y, € Yy, s.t. d(y,+1,Ys) > 1, and form a convergent subsequence
Ty,, note that

Tyn — Ty = (T — AD)yy — (T — AD)Ym + AYn — Ym) € AYn + Yut1,

a contradiction since this implies [Ty, — Ty,| 4> 0. By the exact same logic, if there are in-
finitely many eigenvalues A, with eigenvectors y, outside a ball away from the origin, if Y;, =
span(y1, .., Yu), then the same logic applies, so Ty, — Tym € Anym + Yiu—1,ie. [Ty, — Tyn| > 5, a
contradiction. O

Theorem 5.20 (Spectral Theorem for Compact Self-Adjoint Operators). If H is a (separable) Hilbert
space and T : H — H is a compact, self-adjoint operator, then there exists a (countable) orthonormal basis
of eigenvectors with real eigenvalues for H, i.e. T is unitarily diagonalizable.

Remark 5.13. The separability of H is needed for the basis of ker T to be countable.

Proposition 5.9. T : X — Y is Fredholm iff there exists S : Y — X such that I — TS, 1 — ST are compact.
Proof. 1f T is Fredholm, let S be the composition of the projection from Y onto ran T and the isomor-
phism from ker T+ and ran T. Then, [ — ST, I — TS are easily verified to be finite rank projections,
hence compact. The converse follows since T — AI for compact T is Fredholm. O
Corollary 5.20.1. If T is Fredholm and K is compact, T + K is Fredholm.

Proposition 5.10 (Weyl). Let T : X — X be self-adjoint and K : X — X be self-adjoint compact. Then,
Uess(T) = Uess(T + K)

Proof. This follows from the fact that being Fredholm is invariant under relatively compact per-
turbations. n

Spring 2010 Problem 13 Suppose X, Y are Banach spaces, and X is separable and X* is sepa-
rable. Show that T : X — Y is compact iff for every bounded sequence x, € X, there exists a
subsequence x,, and a ¢ € X such that x,, = ¢ + r,,,, where Tr,,, = 0.

Proof. For the backward direction, note that Tx,, — T¢, so T is compact. Conversely, note that
since X* is separable, the unit ball in X** is metrizable with respect to the weak-* topology,
i.e. weak-* compactness and weak-* sequential compactness are equivalent. Then, by Banach-
Alaouglu, X** is weak-* compact and therefore weak-* sequentially compact, i.e. for any bounded
sequence x, € X, there is a subsequence ¥, — ¥ in X**, where ¥ = J(x) for some x € X since X
is reflexive. Then, ¢(x,,) — ¢(x) for all § € X*, i.e. x, — x. Since compact operators map
weakly convergent sequences to strongly convergent subsequences, we set ¢ = x and obtain
T(xy, —¢) = 0inY. O
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’ Problem 6 Fall 2014 Let X be a Banach space. Show that if X* is separable, then X is separable.

Proof. Let {¢,} be a dense sequence in the unit sphere of X*. Then for any g € Q, there exists an
Xgn in the unit ball of X* such that ¢,,(x4,n) = . Let S = spang(xy,»), which is clearly countable.
I claim that S is dense in the unit ball of X. Indeed, S is clearly dense in spany (x;,), so it suffices
to show the latter is dense in the unit ball. Suppose it is not. Then, by Hahn-Banach, there is a
linear functional ¢ in the unit sphere of X* that vanishes on S yet does not vanish for some x on
the unit sphere. Then, for ¢, such that |¢ — ¢.| < %, |4>(x%’n) = ¢n(x%,n)| =1> %, which is a
contradiction. O

Problem 5 Spring 2014 Prove that /! and I? are separable but [° is not. Moreover, show there is
no bounded surjective map from /% to I'.

Proof. The Q-span of unit vectors in I! and [? is separable, for any a € I!, one may pick x =
(X1,..-X,0,...) such that |(a,);°[, < € and >};_; |xx — ax|P < e. However, [ is not separable. Sup-
pose it was. Then the unit ball in /° is separable. It suffices to show that one can find uncountably
many elements that are all at least one away from each other. But clearly, if we take the subset
of distinct binary sequences, it is uncountable and each element is a distance of exactly one away
from all others. Thus, [ is not separable.

Now, suppose there is a bounded surjective map T from % to I'. Then, the adjoint T* is a bounded
map T* : [ — 2. Moreover, ker T*+ = im(T), i.e. T is injective. However, I? is separable while
I* is not, contradicting the existence of an injective continuous map /* — [2. Thus, there is no
bounded surjective map from I2 to I'. O

Problem 6 Fall 2014 Let a, be a sequence of elements in a Hilbert space H such that |a,|| = 1 for
all n. Show that if the span of {a,} spans H, then H is finite-dimensional. Moreover, show that if
a, — 0, then 0 is in the closed convex hull of {a,}.

Proof. Note that if H was infinite-dimensional, it would have countable dimension as a vector
space. But a standard Baire category theorem argument yields that any Banach space has un-
countable dimension as a vector space. Thus, H is finite dimensional.

Now, suppose that a, — 0. We want to show that for some t,, + ... +t,, =1, Zle tn,an, = 0. O

Let L, € L** be a sequence of functionals defined by L, (f) = % fooo x"e™* f(x)dx. Show that {L,}
has no weak-* convergent subsequence. Why does this not contradict Banach-Alaouglu?

Proof. This does not contradict Banach Alaoglu as the compactness of the weak-* topology on
the unit ball in L** implies sequential compactness only when the topology on the unit ball is
metrizable, which is not necessarily the case (since L* is not separable).

We now show that there is no weak-* convergent subsequence by constructing a function f such
that L,(f) ~ (—1)". For sake of contradiction, suppose there is a convergent subsequence. Let
Ly, = [an,, by, ] be a sequence of disjoint intervals such that b, < a,,,,, where n; is a subsequence of
the chose subsequence, such that L, (x In]-) >1—eand Ly, (xa) < € for some € > 0 for any A such
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that A n I,; = @. This is possible since f, = X'e converges to 0 pointwise, and it is monotonically
increasing on [0, 7] and monotonically decreasing on [n, ), so on any interval |4, b], the sequence
fn is bounded by sup(a, b)x[4), i-e. by dominated convergence theorem, Ly (X[4p)) — 0 as n — oo.
Particularly, since |L,| = 1, it implies that the mass of f, is concentrated further away from the
origin as n — 0, so it is possible to find such a sequence of intervals by taking an appropriate

subsequence ny. Then, f = Zlﬁl(—l)kxlnk e L* hasnorm 1in L%, so

|Lﬂk(f) - (_1)nk| < |€ + Lnk(f _Xlnk)| < 2e,

so we get a contradiction. O

5.4 Banach Algebras
We are now interested in introducing an algebra structure on Banach spaces:

Definition 5.12. A (real/complex) Banach algebra A is a Banach space that is given the structure of an
algebra over R or C, where the multiplication map (x,y) — xy is continuous, or (which can be seen by
uniform boundedness and rescaling to an equivalent norm) equivalently, satisfying |xy| < |x||y| for all
x,y €A

Remark 5.14. Without loss of generality, one may assume the algebra is unital, as for a nonunital algebra
A, the algebra A x K with multiplication given by (a,z1)(b, z2) = (ab + azy + bz1,z122) is Banach algebra
with unit (0,1), with A — A x K being an isometric embedding.

Example 5.5. The space B(X) of bounded operators T : X — X on a Banach space is the prototypical
example of a unital Banach algebra.

With the additional structure of an algebra, the spectrum of A now has additional useful proper-
ties.

Definition 5.13. A character is an algebra homomorphism ¢ : A — K. The space of characters of A is
denoted as A(A).

Proposition 5.11. A(A) is a weak-* compact subset of the unit sphere in A*.

Proof. Note that b being invertible implies «(b) is invertible with inverse a(b~1). If |a| # 1, there
exists bs.t. |[b—1| < 1buta(b—1) =a(b) —1 > 1 (or vice versa). Then,

a<aé?b)_—11_l> =0,

but the element inside is invertible since the ratio (up to flipping the fraction) has norm less than
1, which is a contradiction. It is easy to check that it is weak—* closed and therefore weak-*
compact. O

Proposition 5.12. Every maximal ideal of A is closed. Moreover, if A is a commutative, then there is a
bijection between the maximal ideals of A and A(A).

Proof. Recall that the set of invertible elements is open (by power series expansion). If m is a max-
imal ideal of A, its closure is easily shown to be a maximal ideal containing m, so by maximality it
equals m.

We briefly prove an important lemma:
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Lemma 5.21 (Gelfand-Mazur Theorem). If a normed algebra A (over R/C) is a division algebra, then
A=R,C,H (or A= C).

Proof. The general case is complicated, so for simplicity, we suppose that A is a complex Banach al-
gebra. A classic result is that the spectrum of an element in a complex Banach algebra is nonempty.
Buta — Al is noninvertible iff a — AI = 0,1.e. a = AL ]

Now, if A is commutative and I is a maximal ideal, then A/I is a field over C, so by the Gelfand-
Mazur theorem, A/I = C. Finally, we note that by the first isomorphism theorem, if x € A(A), ker a
is a closed maximal ideal of codimension 1. Consequently, for commutative Banach algebras, we
have the following bijection:

A(A) < MaxSpec(A)
o — kerw

a:(a—am)—m

O]

Recall that for any Banach space E, we have an embedding E < C(X), where X is the unit ball
of E* and is therefore weak-* compact. Motivated by this, we consider the map A — C(A(A)). In
general, this may not be injective, surjective, or isometric. However, it turns out that if we restrict
ourselves to a special class of Banach algebras, this map turns out to be an isometric isomorphism.

Definition 5.14. A *—algebra is an algebra equipped with an anticommutative involution * satisfying
(xy)* = y*x*. If A is a Banach *—algebra satisfying |x*x| = ||x|? for all x € A, then A is called a
C*—algebra. A homomorphism preserving the involution is called a *-homomorphism.

Remark 5.15. Since |xy| < |x|||y|, the last condition is equivalent to |xx*| = |x|||x*|| for all x € A.

Example 5.6. The prototypical example of a C*—algebra is that of B(H), the space of bounded linear
operators on a Hilbert space H.

The map ® : A — C(A(A)) defined earlier is known as the Gelfand transform.

Definition 5.15. The spectral radius of a is s = sup,,(, |2|-
Lemma 5.22 (The spectral radius formula). 7, = lim,_, Hg”H%,

Proof. Note that the the power series for (1 — AI)™! = A71(4 — I)~! converges whenever |A7!| <
|a| ! and diverges whenever |A~!| > limsup, , |a" H*%. This means that the spectral radius is at

least r, > limsup, | Ha”H%. Conversely, by factoring a” — A", one sees that A € 0(a) = A" €
o(a"),sorl < |a"|, and by taking the liminf on both sides, the claim follows. O

Corollary 5.22.1. If a is normal in a C*-algebra, then

2 1 2
I© = "=y,

ra <|a "I

j*a| < lim |+ |a
n—aoo

ie r, = |al.
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Corollary 5.22.2. Since |a|? = |a*a| = r,+,, there is a unique norm on a *-algebra that makes it into a
C*—algebra.

Lemma 5.23. If a is self-adjoint, o(a) < R.
Proof. One easily verifies that if a is self-adjoint, then ¢ is unitary. Then, for A € o(a),
eia _ ei/\ _ (ei(af)\) o 1)€iA _ (El - /\)bei/\

" — ”_1 . . . 3 7 / . . .
forb =37, % b commutes with 2 and a — A is not invertible, so ¢/ — ¢'* is not invertible.
If u is unitary, |u||* = |u*u| = 1,i.e. r, = 1,and since A € o(u) = A~! e o(u~!), we have that

o(u) c S'. Since €' is unitary, we thus have |¢"}| = 1,i.e. A € R. O

We are now ready to state the main results of this section.
Theorem 5.24 (Gelfand Representation Theorem). If A is a commutative C*-algebra, the Gelfand trans-

form is an isometric *-isomorphism.

Proof. Recall that ®(a)(«) = a(a). By the identity

_a+a* | (—ia)+ (—ia)*
a= 5 +1 5 ,

it suffices to show @ is a *-homomorphism on self-adjoint elements, i.e. ¢(a*) = ¢(a) for ¢ €
A(A),a € A self-adjoint. But this follows from the fact that c(a) = 0(a*) = ImP(a) < R.

By the C* identity, we have that |a]| = |a*"| T ry = [®(a)|c0, so P is an isometry and is therefore
injective. Note that Im ® clearly separates points, since if a1(a) — az(a) = 0 for all 4, then a1 = 5.
Then, by Stone-Weierstrass and the fact that the image of an isometry is closed, ® is surjective and
therefore an isometric *-isomorphism. O

Corollary 5.24.1. This shows that every ¢ € A(A) is in fact a *-homomorphism.

Corollary 5.24.2. Ifa € A is normal, then ® : C*({a}) — C(c(a)\{0}) is an isometric *-isomorphism s.t.
D(a) = idy(q)\ (0} This is because ¢ € A(A) is uniquely determined by the image of 0 + A = ¢(a) € o(a)
(by the *-homomorphism property of A(A)), i.e. A(A) = o(a)\{0}, and ®(a)(¢p) = P(a)(¢p(a)) = ¢P(a),
showing that ®(a) is the identity map.

Definition 5.16 (Continuous Functional Calculus). For f € C(c(a)), define f(a) to be the element
corresponding to f in the above isomorphism. Note that by the * —homomorphism property of A(A), f(a) =
p(a) for all polynomials p(z). Additionally, since ® is an isometry, f, — f uniformly implies that f,(a) —
f(a).

Corollary 5.24.3 (Spectral Mapping Theorem). If a is a normal element in a C*—algebra and f €
C(o(a)), the corollary above implies that Im ®(f(a)) = f(c(a)), i.e. o(f(a)) = f(o(a)).

Proof. Note that
A € o(a) < a — Al not invertible < ®(a — Al) not invertible <= A € Im ®(a).

This implies that (a) = Im ®(a), and the rest follows immediately from the Gelfand representa-
tion theorem. O
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We now list some applications of the continuous functional calculus.
Proposition 5.13. TFAE:
(a) ais self-adjoint and o(a) < [0, ).
(b) a = b? for some self-adjoint b.
(c) ais self-adjoint and |A — a|| < |A| for some/any A = |a.
Proof. The forward direction is immediate by applying the spectral mapping theorem to f(x) =

v/x and the fact that the continuous functional calculus commutes with the * operation. The back-
ward direction is immediate by applying the spectral mapping theorem to f(x) = x2. Finally,

IA—a = sup A~z <A

zeo(a)

for o(a) < [0, ), and the converse can be established similarly. O

Definition 5.17. If any of these hold, a is called a positive element, denoted a > 0. We denote A as the
cone (i.e. a vector space closed under positive scalars) of positive elements. Note that this is indeed a
cone by part (c) of the above characterization and the triangle inequality.

Example 5.7. If || := Va2, ay := 1(|a| + a), then ay,|a| > Oand ara_ = a_ay = 0.
Lemma 5.25. If0 < a < b, |a| < |b|. If a, b are also invertible, then 0 < b=! < a~ L.
Proof. Note in general that if 2, b commute, and f,, f; are the continuous functions corresponding
toa,b,a <b < f; < fp. Then, f; < f)p as functions on C*({b}),soa < b < [b],i.e. fa < fjp), s0
|all = | falc < |b]. For the second property, note thata < b = c*ac < c*bc, since Ay = {a*a :
a € A}. Thus, a < b implies b=2ab~? < 1, so
la2b~"a2| = b 2a2|? = [b~2ab~2| < 1,

ie axb~la2 <1. Thus,

bl = a_%(a%b_lai)a_% <a

U

The main theorem of C*-algebra states that the canonical example of a C*—algebra is in fact the
only possible case, up to isomorphism.

Theorem 5.26 (Gelfand-Naimark-Segal (GNS) Theorem). Every C*—algebra is isometrically *-isomorphic
to a closed subalgebra of B(H) for some Hilbert space H.

Another important class of algebras are the so-called von Neumann algebras.

Definition 5.18. A von Neumann algebra (or a W*—algebra) is a C*—algbra A s.t. there exists an
algebra B s.t. B* = A, i.e. A has a predual. Equivalently, A is a weakly closed subalgera of B(H).

Theorem 5.27 (Von Neumann Bicommutant Theorem). If A ¢ B(H) := G is a *-subalgebra, then the
von Neumann algebra generated by A, i.e. the weak closure of A, is equal to the strong closure of A and is
equal to A" = Cg(Cg(A)), the bicommutant of A.

61



Proof. Note that A ¢ A”. If T ¢ A’, there exists an operator S and a weak neighborhood where
(TSx,y) —{(STx,yy + 0,ie. A’ is weakly closed. Thus, the weak closure of A is contained in A”.
Since strongly closed implies weakly closed, it follows that the strong closure is a subset of the
weak closure. Finally, it suffices to show that any open neighborhood of T € A” in the strong
topology contains an element of A. Note that for 1 € H, the norm closure H; of Al is a closed
subspace of G, and let P be the corresponding projection.

Lemma5.28. Pe A’.

Proof. For x € H, let O,h — Px. For S € A, we thus have SO,h — SPx € Hyj, so PSPx = SPx, i.e.
PSP = SP for all S € A. Finally, using the fact that A is a *-subalgebra, we get that

{x,SPy) = {x,PSPy) = (PS*Px,y) = {x, PSy),
soPS =SP,ie. Pe A’ O

Then, Th = TPh = PTh € Hj, so by the definition of Hy, |[Th — Sh| < € for some S € A for any
€ > 0. Thus, there exists a sequence S, — T in the strong topology, so T is in the strong closure of
A. O

5.5 Borel and Holomorphic Functional Calculus

We have seen that for a C*—algebra, we can define a continuous functional calculus. We are
interested in defining a more restrictive functional calculus on a more general class, namely, just
Banach algebras.

Definition 5.19. A function f : U < C — B with values in a Banach space B is analytic/holomorphic
iflim,_,, %ﬁ(}(z‘)) exists for all z € U. f is weakly analytic if ¢ o f is analytic for all ¢ € B*.

Remark 5.16. If f is continuous, weakly analytic <= analytic.

Definition 5.20. For a function f : X — B with values in a Banach space B, one may define the Bochner
integral the same way one defines the Lebesgue integral on R. In particular, if s, — f is a sequence of
simple functions, one may define [ f = lim [ s,, which can be shown to be Cauchy and independent of
the chosen sequence. The Bochner integral satisfies [ Tf = T [ f for any bounded linear operator T, and
one has all the classic complex and real analytic results (DCT, Monotone Convergence, Fatou, Cauchy’s
Theorem/Integral Formula).

Remark 5.17. Radon-Nikodym property.

Definition 5.21 (Holomorphic Functional Calculus). For f : U — C holomorphic, a € B, where B is a
Banach algebra and a € B, and o(a) < U, define

_1[fe),
f(a) /7 2,

21 ), z—a

where v = B(0, r, + 1) encloses o(a) and ﬁ is the resolvent mapping.

Proposition 5.14.  (a) The integral is well-defined and independent of the choice of 7y.

(b) (fg)(a) = f(a)g(a),ie. f — f(a)isa homomorphism.
(c) If fn — f normally, then f,(a) — f(a).
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(d) id(a) = a and the calculus agrees with the continuous functional calculus on a C*—algebra.

Proof. The well-definedness is a consequence of Cauchy’s integral formula for the Bochner inte-
gral. The fact that the map is a homomorphism follows from Fubini. Indeed, if we assume that 74
is in the interior of the region bounded by 7>,

o -1 _ _ —1
F@3@) = /7 | nf(zl)g(zz)<21 B ) WS

Zy) —Z1
_ 1 f(z1) g(22) g(z2) f(z1)
©(2mi)? [ by 21— 4 { v 22 — 21 dzz] 4z = gy 22— [ v 22— 21 dzz] dzl}

_ 1 [ f=) [1 8(z2) d22] gz = = [ 18 4 (o)),

27ti z1—a |[2mi [, 22— 21 27 Jo, z1—4

T

where the second term vanishes since z17; is outside the region bounded by ;. Normal conver-
gence implies convergence in norm immediately by definition, and

1 z 1
27_[[Yz_adz_z:a”/znflz_a

n=0 v

by basic properties of complex integrals. Finally, for continuous f, let p, — f be a normally
convergent sequence of polynomials. Then, since the holomorphic and continuous calculi agree
on polynomials, by the uniform convergence property, p,(a) — f(a), which is the same element
in both functional calculi. ]

Remark 5.18. Note that the proof requires that f be holomorphic on o(a) as well, so one cannot apply the
calculus to, for instance, meromorphic functions with poles in o(a).

Notice that the curve y encloses the entire spectrum. If it did not enclose any of the spectrum, the
resolvent would be analytic and the integral would evaluate to 0 by Cauchy’s theorem. But what
if we include only part of the spectrum?

Definition 5.22. For a curve vy avoiding o(a) and enclosing some compact subset K < o(a), define the

Riesz projector
1 1

= — dz.
27T z

HK:

,Z—4a
Proposition 5.15.  (a) Ik is a projection that commutes with a, and if a is self-adjoint, Ik is an orthog-
onal projection (i.e. self-adjoint and s.t. 112 = Ig).

(b) If a is a bounded operator on a Banach space, Im I1k, Im(I — Ilk) are disjoint a-invariant subspaces
with o(alim1) = K, 0(alim—11)) = 0(@)\K.

Proof. (a) Following the calculation in Proposition 5.12 with f = ¢ = 1 and 7 being a per-
turbation containing <y, we obtain that g(z2) = 1, so H%( = Ilk. If a is self-adjoint, then
(z—a)™Y* = (Z—a)"}, so letting -y be a circular contour and reparametrizing to go in the
counterclockwise direction yields IT} = Ilk. The fact that ITx commutes with a is analogous
to proof of the homomorphism property of the holomorphic functional calculus.
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(b) The commutativity implies that Im I'lg, Im(I — Ilk) are a-invariant, and it is easy to check
that they are disjoint. Note that p(A) < p(Allk), since the resolvent of A restricted to Im ITk
is the resolvent of Allk. Applying the same claim to I — Ik yields p(Allk) < p(A).

O]

Remark 5.19. This suggests that the Riesz projector is to be interpreted as a projection onto the correspond-
ing part of o(a).

Of particular interest is then the case whenever a is a compact operator, since the spectral theorem
yields a discrete spectrum in this case.

Theorem 5.29. If T : X — X is a self-adjoint operator with discrete spectrum (e.g. when T is compact),
then one may write X = @@ ImII, , where I1), are the projections onto ker(T — A;), yielding the spectral
decomposition
X = Pker(T - A;).
1

Corollary 5.29.1. This immediately yields the decomposition into invariant subspaces for finite-dimensional
spaces, which is known as the Jordan canonical form.

Now that we have developed two functional calculi, we are ready to formalize the most general
functional calculus for Banach algebras, known as the Borel functional calculus. For this, we need
the most general version of the spectral theorem.

Theorem 5.30 (Spectral Theorem, General Version). The Gelfand embedding @ : C(c(A)) — B(H)
for a C*—algebra A < B(H) may be extended to a *—homomorphism L*(c(A)) — B(H).

Proof. We sketch the proof. Define ¢ ,(f) = (®(f)x,y) = [ fduyy for f € C(c(A)), where p,,
is the measure given by the Riesz-Markov representation theorem. Moreover, f — [ fduy, is
bounded and bilinear for f € L*. Thus, there exists a unique A¢ s.t. [ fdpu,, = (Asx,y). One may
then arduously verify that f — Ay is a n injective *-homomorphism. O

Remark 5.20. Given T € B(H) normal, the spectral theorem corresponding to the Gelfand embedding of
C*({T, T*}) yields the the maps vg : E — (Ay,C, ), which are collection of measures called the spectral
measures of T associated to §. For |¢| = 1, these are probability measures.

Definition 5.23 (Borel Functional Calculus). The embedding L™ (c(A)) — B(H) is called the Borel
functional calculus, defining f(T) € B(H) for a normal operator T.

Example 5.8. Recall that A : H> — L2. Consider the Schrodinger equation
iy = —Au, u(0) = ug € H2.

We may formally define the solution '
u(t) = e*uy,

where we may now rigorously define the unbounded densely-defined operator ¢ : > — L7 as

eitAu—/eitzdz
)y =N
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which may be equivalently expressed in terms of the Fourier transform as

i —1,ite? 1 i
(e tAu)(x) =F 1(6 £ u) = (47_[”)% /ne 3 u(y)dy.

By dominated convergence, one may see that for ug € L' n L?, u is continuous and satisfies the dispersive
estimate

5.6 Baire Category Theorem
Recall the Baire Category Theorem:

Definition 5.24. A subset X of a topological space is meager or of first category if it is a countable
union of nowhere dense sets. Otherwise, X is called nonmeager or second category. The complement of a
meager set is called comeager or residual.

Remark 5.21. The closure of a nowhere dense set is nowhere dense.
Theorem 5.31 (Baire Category Theorem). TFAE:
(a) A topological space X is nonmeager.
(b) A comeager set is dense.
(c) A countable intersection of open dense sets is dense.
If any of these conditions hold in a topological space X, X is called a Baire space. Moreover, every complete

metric space and locally compact Hausdorff space is a Baire space.

Proof. We prove the equivalences. Note that the complement of an open dense set is a nowhere
dense set. Then, the last statement implies that the union of nowhere dense sets cannot be the
entire space. A countable intersection of open dense sets is a comeager set. Conversely, if A is
comeager, A = A is the countable intersection of open dense sets, and is therefore dense.

Now, suppose X is a complete metric space, U; a collection of open dense sets, and let x; € A = X
be an open set. Then A n U; contains a closed ball. Proceeding inductively, we choose a sequence
of balls B(xj,€;) < B(xj_1,€i_1) n Uj_1 for €; — 0. Then, the sequence is Cauchy, converging to
xe An();U;,so();Uis dense in X. O

Remark 5.22. It is very important to note that even though meager sets are countable unions of nowhere
dense sets, meager sets can still be dense. For instance, Q < R is meager and dense, and so is C1([0,1]) =
C([0, 1]). Meanwhile, comeager sets are always dense (in a complete metric space).

Example 5.9. (a) Q isan F, but not G set, for if Q = (); U;, for some enumeration q; of the rationals,
N U\{g:} = @, contradicting Baire category theorem. Similarly, R\Q is G5 but not F,.

(b) A Banach space must have uncountable dimension as a vector space. Otherwise, it is the union of
finite-dimensional subspaces, which are nowhere dense, which contradicts the Baire category theorem.
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(c) Consider the subspace X < C([0, 1]) of functions differentiable at some point x. Define

1 f)—f(t)
Apm={feX Ix,|x -t < — —— 2 < ni.
= (fe X3t < o — [[O=S0) <y
By Bolzano-Weierstass, one can verify that Ay, is closed. One can also show that Ay, has empty
interior and so is nowhere dense, so by Baire category, we conclude that X < | J Apnm is meager in
C([0,1]). Thus, "most” continuous functions are in fact nowhere differentiable.

(d) () If f e C*([0,1]) is such that f)(x) = 0 for each x for large enough n dependent on x, then f is
a polynomial. Indeed, by way of contradiction, consider the sets

X, = {f"(x) = 0},S = {x : f not a polynomial on any open interval containing x}.

Note that S is nonempty and closed. Applying the Baire category theorem to X, we get that (a,b) N
S < X,y n S for some n. at least one of them must have nonempty interior. Now, on any open subset
of (a,b)\S, by the definition of S and X,, f has to be some polynomial of degree d < n. But then
(a,b)\S < Xy, so f is a polynomial of degree at most n on (a, b), a contradiction.

The real power of Baire category theorem is to provide an elementary proof of the Open Mapping
Theorem from functional analysis.

Theorem 5.32. If T : X — Y is a bounded linear map between Banach spaces, either T is surjective and
open, or its image is of first category in Y.

Proof. If T is surjective, the we note that by the Baire category theorem TB(0,7) has nonempty
interior for some n € IN. In particular, it must contain an open neighborhood of the origin, which
completes the proof. O

Remark 5.23. Thus, the approach is as follows. If V. < W is a closed proper subspace, as long as the
inclusion map is continuous, the above theorem implies that V is of first category in W. If V is open, one
must describe V as a union of closed subspaces, each of which is meager.

5.7 Borel Sets

Remark 5.24. Recall that the product topology (as opposed to the box topology) is the topology gen-
erated by rectangles with finitely many nontrivial components (and is more useful since it satisfies Ty-
chonoff’s theorem, which says that any product of compact topological spaces is compact).

Definition 5.25. The product c-algebra on a product of measurable topological spaces is the smallest
o-algebra that makes the projection maps 7;, measurable, i.e. the o-algebra generated by cylinder sets -
products of at most finitely many nontrivial measurable sets. If the product is countable, then the product
o-algebra is in fact generated by arbitrary rectangles, that is, products of elements of the respective o-
algebras.

Proposition 5.16. If B(IR), L(IR), are the Borel and Lebesgue c-algebras of R, respectively, then
B(R)®" = B(R"),

but
E(IR)®” < L(R").
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Proof. B(IR") is generated by definition by the open sets in IR"”, which are by definition at most
countable unions of products of open sets. Thus, B(R") = B(R)®". Conversely, a rectangle A x
B can be written as the intersection A x X n X x B, where both sets are measurable since the
projection maps are continuous. We thus conclude that B(R)®" < B(R") (and an analogous
argument holds for the Lebesgue measure). Finally, if V — R is unmeasurable, V x {0} is Lebesgue
in R” since it is null, but since the inclusion i : x — (x,0) is measurable, it is not in the product
o-algebra. O

Remark 5.25. In general, since the projection maps are continuous in the product topology, they are mea-
surable. Thus, any cylinder set is a finite intersection of preimages under projections of Borel sets, and is
thus Borel measurable on the product space, which shows that ) B(X;) < B([ [ X;). Conversely, note that
not every open set is a cylinder set (since one can take unions of cylinder sets), so equality does not
necessarily hold. However, if each space is second-countable (i.e. has a countable base) and the product is
countable, then each open set is a union of cylinder sets, so B([ [ Xi) = & B(Xj).

Example 5.10. Tnke X x X with the discrete topology, where X has cardinality greater than R. Then,
the diagonal is a union of open sets and is therefore measurable. If the diagonal was measurable in the
product o-algebra, it has to be the union of at most uncountably many sets, so at least one set has two points
(u,u),(v,v), implying (u,v) is in the diagonal, a contradiction.

A popular type of question is to show that a certain subset of a set is Borel, i.e. a countable
union and intersection of open or closed sets. The typical approach in these problems is to con-
vert between logic-based definitions and the corresponding countable unions and intersections of
open/closed sets.

Lemma 5.33. The set of points of continuity of a measurable function f : R — R is Gs.
Proof. First, since we want to avoid talking about individual continuity points (as there are un-

countably many of them), we rephrase continuity as a property on an open set. In particular,
notice that f is continuous at c iff

Ve > 030 > 0,Yy,ze (c—9d,c+6) = |f(y) — f(z)| <€,

We thus define

Ay = {x:35>O,Vy,ze (x=0,x+0) = |f(y)—f(2)| < 711}

Then,
(VAn={x:Ve>030>0,¥y,ze (x—6,x+8) = |f(y)—f(z)] <e},

which is in fact the set C(f) of continuity points of f. It remains to show that A, is open. But if y
is sufficiently close to x € A, taking ¢, = 1% suffices, and we are done. O

Remark 5.26. This proof immediately generalizes to f : X — IR for an arbitrary metric space R.

Lemma 5.34. On R, the converse holds - for every Gs set X < IR, there exists a function that is continuous
precisely on X.
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Proof. Let X = [); U; be a G5 set. WLOG, suppose that U;;1 & U;. First, note that the function
Xu + 3 Xug~q is continuous on the open set U;, and discontinuous everywhere else, since if it was

continuous at x € UY, it would be close to 0 or 3 in some open neighborhood of x, and so it would

have to be 0 or § on some open neighborhood of x. But that is impossible since f is 0 or 3 on a
subset of the rationals/irrationals. We now define the function

o 1
=3, Z o (Xu; + 2Xuch)

Note that the function takes the following values:

1 xe (U,

1-27""1 272 ye (U\U,11) N Q,
f(x)=<1-2"""1 xe (U,\Uy41) nQF,
% xel;nQ,

0 x e Ujn Q-

Now, if x € ); U;, for any x; — x, x € U, for any large enough #, so
fl) =1—-27""1 272 1

as xy — x and n — o0, so f is continuous on X. If x € U§ n Q°, then f is continuous at x iff f is 0
on an open neighborhood of x, which is impossible since it is only 0 on a subset of irrationals. If
x € U§ n Q, then f is continuous at x iff all irrational points around it are in Up\U; and all rational
points are in U§, which contradicts the fact that Uy is open. Finally, if x € U,,\U, 41 is rational, then
it can be approximated by a sequence x; of irrational points in at least U, so

flxp) =1—-27""1>1-2n"t o2

which shows that f is not continuous at x. If x € U,,\U,+1 is irrational, then if x is a limit of point
of U, 41, there is a sequence x; — x such that

f(xk) > 1— 2—71—2 _ 2—11—3 > 1— 2—11—1,

and if x is not a limit point of U, 1, there exists a sequence x; of rationals in U,\U,+1 converging
to x, so that

fla) =1-27""1-27""2 < f(x),

which shows f is not continuous at x. Thus, the constructed example is continuous precisely on
the set X.

O

Corollary 5.34.1. There does not exists a function continuous precisely on Q.
We now consider a much more involved question of differentiability with this technique.

Proposition 5.17. The set of points where a measurable f : R — IR does not possess a finite derivative is
G, 1.€. the set of points of differentiability is Fy;.
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Proof. Similarly, we rephrase nondifferentiability as a local property. Define G(a,b) = f (a}l:f; @

Then, notice that a function is not differentiable at ¢ iff lim,_,. G(a, c) does not exist, i.e.
3¢ >0,¥6>0,3y,ze (c—6,c+6) = |G(y,c) —G(z,c)| <e.

We thus define

1 1 1
Apm = {X :dy,z e <x—n,x+n) = |G(y,x) — G(z,x))| > m}'

We claim this is an open set. Indeed, if [x' — x| < § := % -

chosen to satisfy the condition above, then for |x' — x| < &,

max(|z — x|, |y — x|), where y, z are

1
AN / -
Gy, ¥) — Gz, )| > -

andy,ze (¥ — 1 %'+ 1) Thus,

nl

UﬂAn,m ={x:¥e>030>03y,ze (x—9,x+0) : |G(y,x) — G(z,x)| > €}

n m

is precisely the set of points where f is not differentiable, and since A, ,, is open, this is a G, set.
Thus, the set of points A(f) of differentiability is G§, = Fy;. O
Corollary 5.34.2. There is no function that is differentiable precisely on the Vitali set.

Corollary 5.34.3. The set of points where the derivative is continuous is a Gs subset of an Fys set, i.e. a
countable intersection of sets that are themselves an interection of an open set with an F,s set, i.e. C(f) is
also an Fys set. Recursively, this implies that C(f™), A"(f) are at worst Figsy sets.

In fact, one can say something stronger about C(f’) for an everywhere differentiable function f.

Proposition 5.18. If f is differentiable, then C(f') is a dense Gy subset of R.

Proof. The previous corollary implies that the set is Gs. To show that it is dense, note that f” is the
_ S —f)
= [ =)

n

pointwise limit of continuous functions f,(x) . Define

b

S|

Dy(f) = {x : limsup f(y) —li;rl)i?ff(y) >

Yy—=x

and note that since C(f’) = (| D5(f"), it suffices to show that Dj, is dense for all n, as C(f’) is then
an intersection of dense open sets and therefore dense by the Baire category theorem.

For sake of contradiction, suppose Dy, n I = & for an open set I. Now, define E;, = ﬂi/jzk{x :
|fi(x) — fi(x)| < £}, and note that since f, converge pointwise, i.e. | J; Ex = X, and Ej are closed,
by Baire Category there exists k s.t. Ex n [ has nonempty interior. But since each f; is continuous,

taking the limit i — oo implies that on that interior, |f(x) — f(y)| < % < %, contradicting the fact

that DS n I = @. O

Corollary 5.34.4. If f is everywhere differentiable, then the set of points where f' is continuous is uncount-
able.
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Remark 5.27. Despite this, there exist everywhere differentiable functions whose derivatives are continuous
only on a measure zero set. For example, consider the construction of the Volterra function: take the
function x*sin(2) on [0,&], cut it off at the largest value of x where the derivative is zero, mirror across
x = w, and extend it to be a constant. Then, translate it to the first interval removed from the fat Cantor
set Cg of measure 0 < B < 1. Repeat this process for each of the subintervals removed in the fat Cantor
set. Then, the resulting function V, has the following properties: since the complement of Cg is open and

dense, the function is in fact differentiable with bounded derivative Cg. On the fat Cantor set, the function

identically vanishes, and is in fact differentiable with derivative 0, since x*sin(3) is differentiable with
derivative 0 at x = 0. However, Vy is discontinuous on Cg, since there is a sequence of endpoints (at
which the derivative is discontinuous) converging to every point of Cg. In particular, V is not Riemann
integrable. Now, in each of the interval removed, we can put another copy of the Volterra function, e.g. if V,,
is discontinuous on a fat Cantor set of measure %, we can cover half of the remaining measure by copies of the
function. Repeating this countable process countably many times yields the Volterra function V (x), which
is differentiable everywhere but the derivative is discontinuous a.e. In particular, this a counterexample to

the Fundamental Theorem of Calculus if the derivative is not assumed to be integrable.

Problem 1 Fall 2014 Show that L3(R) n L?(R) is Borel in L3(R).

Proof. The idea is to break up the problem into smaller pieces that are more manageable and where
we have known results. In particular, note that we have a relation between the L? and L norm on
a finite measure set A, stating that ||/ |2 < | f||3. I claim that

Appi={fel’: HfH%Z([_k,k]) <nj.

is open in L%. Indeed, suppose f € L% and ||f||5 < n. Holder implies that for all € > 0, there exists a
0 > O such that | f — g|l» < € whenever | f — g|3 < ¢. In particular, this implies that for any values
of |f|]2 < n, we can choose & > 0 such that |g|3 < (|f — gl2 + [ f]2)? < n whenever |f —g[3 < J,
showing that A, is open in L3. Then,

PR A L2R) = | () Auks

nelN kelN

ie. [3nL2%isa Gy, set. O

Show that L2(R) n L®(IR) is Borel in L*(RR).

Proof. The issue with applying the same method as for the last problem is that the Holder bound
gives us the reverse direction, i.e. [f|2 < | f|w- Thus, we instead attempt to prove that the sets

B = {f € Lt | flfa_sppy < 1}

are closed in L. Indeed, suppose f, € By, fn — f in L*. Then, by Fatou, ||} < liminf |f, ]2 <
N, and so f € By, i.e. By is closed in L. Then, as before,

L2(R)  L*(R) = | J () Buso

nelN kelN

ie. itisa F, set. O
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’ Let f : R" — R be measurable. Show that the set of points of continuity of f is Borel.

Proof. Again, the idea is to construct an intersection or union of open/closed sets. Here, one has to
specifically rely on the fact that contuinuity is "local": it tells you something about the oscillation
of a function in a neighborhood of a point. Particularly, we will use the following definition of
continuity, which avoids talking about continuity "at a point."

f continuous at x <= Ve > 030 > 0,|y — x| <4, |z—x| < = |[f(y) — f(z)| <e.
Then, define
Ce={x:36>0:y—x|<d,]z—x|<d = |f(y)— f(z)| <€}
Note that C. does not parametrize by 4, as that would be too weak to state openness or closedness.

I claim that c. is open. Indeed, if |x' — x| < &, then |y — x|, |z — x/| < § satisfies the conditions of
Ce. Thus, C, is open, and

C(f)=[)Cy,

i.e. C(f)is a Gy set. O

’ Let f : R" — R be continuous. Show that the set of points of differentiability of f is Borel.

Proof. We attempt the same approach, yet as always, we want to use the right definition of dif-
ferentiability. In particular, let us rely on the previous result, defining the continuous function
F(x,h) _ f(x-&-h});f(x) ‘

f differentiable at x <= Ve303Y : |h| <6 = |F(x,h) - Y| <e.

Now, define
Desy ={x:|h| <6 = |F(x,h)—Y| <e.}

D(f) = U ﬂ UDi,%,kr

keQ melN neIN

Then,

which is a G, set. For general measurable functions, note that D(f) < C(f), so D(f) is Borel is
Borel on C(f), i.e. it is Borel in R. O

Let T : Co(R) — C¢(R) be such that |Tf]s < |f]e and p{x : [Tf(x)| > A} < L1}, Show that
ITlp < 1fllp forall1 < p < oo
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5.8 Sobolev Spaces

We have seen that often times, we are able to take derivatives of functions in some sense. For
instance, BV functions are precisely those whose derivative is a measure. But what if the derivative
itself is a function?

Definition 5.26. Let () < IR" be open. A function g : 3 — R is the a-th weak derivative of f if
Jo fD%¢ = (1)1 [, D*g¢ for all § € CZ(Q)).
We now consider the spaces of functions whose weak derivative is integrable.

Definition 5.27. For k€ N and 1 < p < o The Sobolev space W< (Q) is the space of functions whose
first k derivatives are in L?, i.e. the space of functions with finite norm

1
p

| flwes = | X5 ID*FI

|| <k

for p < oo and

[ Flwkee = D3 1D -

|| <k
Proposition 5.19. W7 (Q) is a Banach space.

Proof. If f, is Cauchy is the W*? norm, then the candidates for the limit f and its derivatives D* f
are clear. It remains to show that

[0t = tim [ D% = (-0 tim [ D*fp = (-1 [ D,

n—o0

which shows the claim. The case p = o can be handled similarly. O

Since WK can be thought of as a collection of L spaces, Sobolev spaces inherit many properties
from LP. For instance, W*? is separable iff p < oo, reflexive with dual Wk for 1 < p < o, and
Wk?2 := HF¥ is a Hilbert spaces. As always, we have density results, such as the following:

Proposition 5.20. For p < co, C¥ is dense in WP in the W*P norm.

Proof. Take an approximation ¢, to the identity. Then, since D*(f * ¢.) = (D*f) * ¢¢, if & € CF is
1 on B(0,1) and 0 on B(0,2), then ®(ex)(f * ¢pe) is a sequence of compactly supported functions
converging to f in Wk?. O

But really, why do we care about Sobolev spaces? This is true mainly because of a wide number of
so-called Sobolev embedding theorems, which trade regularity for higher integrability. We begin
with the simplest case of W'?.

Definition 5.28. For p < n, define the Sobolev conjugate p* > p of W by
1 1 k
E

p pn
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Theorem 5.35 (Gagliardo-Nirenberg). If Q) is bounded, then WP (Q) < LP*(Q) is a continuous
embedding, i.e.
HuHLP* < CH”HWLP'

4] = \ [ st

" nil ﬁ " ﬁ
/|u|n—1dx1 < /H (/|Vu|dyi> dx; < </|Vu|dy1) (H//|Vu|dX1dyi> .
i i=2

Next, we pull out the y» factor, integrate with respect to x,, and use generalized Holder again to

get
u T =
/ |u|7=dxydxy < ( / \Vu]dxldm) 1 < // \Vu]dxldxzdyi> .

i=3

Proof. Note that

< /|Vu|dyl

Thus, by generalized Holder,

Continuing in this fashion, we get

. T
/|u|nldx < </|Du|dx> ,

which yields the estimate for p = 1. For p > 1, apply the estimate to v = |u|” and use Holder to
get that if <y is chosen so that

T p
=(y—1)——
1= )p—f
then
Mmoo P
n—-1 n-—p P
This yields the general Gagliardo-Nirenberg inequality. O

The way to interpret Gagliardo-Nirenberg is that for one derivative in L?, you get an extra 1 in
integrability.

Now, what happens if p > n? Surprisingly, it then turns out that the function is Holder continuous.

Theorem 5.36 (Morrey’s Inequality). The inclusion WP (R") — C%7(IR") is continuous for y = 1 — %.
Proof. O

Thus, we have that for a function with one derivative in L?, we get 1 of integrability if p < n and
1- % of Holder continuity if p > 1. We can now generalize these statements to W*?.

We may now generalize this to having k derivatives in L”, which is known as the general Sobolev
embedding theorem.
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Theorem 5.37 (General Sobolev Inequalities).  (a) Sobolev Embedding Theorem: Let p*, q* be the
Sobolev conjugates of WP, W', respectively. Then, if p < nand q > p,k > 1, if

p =49,
then one has a continuous embedding
WhP(R™) € WH(R™).
(b) Rellich-Kondrachov Theorem: If k > | and
pr>an
then on a bounded open set U, then the embedding is compact.

(c) If pk > n,r € N, and
[ )
p p

then one has a continuous embedding

WEP(R™) = C™*(R").

Remark 5.28. How do we interpret the inequality above? First of all, if we embed a Sobolev space into
another Sobolev space, we will lose derivatives and gain integrability, so g > p,k > |. Then, we need p < n
as in the proof of Gagliardo-Nirenberg. The case p* = q* represents a critical case of the inequality, and the
if the two are not equal, then we have enough regularity to establish compactness. Finally, the last part is a
generalization of Morrey’s inequality, which tells us that if our derivatives are very integrable, then that is
as good as the function being continuous differentiable.

Corollary 5.37.1. If pk > n, then WFP(R") = C(R"), and thus consists of continuous functions. For
example, forn = 1, W (IR) = AC(RR) is the space of continuous functions. For n = 2, H*(R?) = C(IR?).

Here is the proof of the Rellich-Kondrachov Theorem:

Proof. Let u,, € W be a bounded sequence, and let u, be the corresponding mollifiers. The goal
is to show that uj,, — u, uniformly in m as € — 0, as then, by applying Arzela-Ascoli on uj,, one
may obtain

. 4 .
lim sup |uy, —uy |y =0, uj, — uafy < 5 = lim sup ||ty — u,| <6,
and finish with standard diagonal argument. To show uniform convergence, we can easily show

that u$, — u,, uniformly in L', and since g* < p*, by interpolation, we can bound the L7" norm by
L' and L?* norms, where the latter may then be bounded by Gagliardo-Nirenberg. O

5.8.1 Fractional Sobolev Spaces

Now, recall that the Fourier symbol of the derivative operator is &'. What if we take noninteger
powers of ¢?
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Definition 5.29. For k € R, p < o, the Bessel potential space H"?(Q) is the space of functions with
finite Sobolev norm

1Ly = IF T F £,
where (&) = (1 + |E|?)? is the Japanese bracket.

Finally, we may attempt to generalize the Holder condition to the L? setting to attain yet another
possible definition.

Definition 5.30. Fors € (0, 1), define the Sobolev-Slobodeckij space W*? as the space of functions with

finite norm
1
ullwsp = (/ | +/ Jutx |n+sp dxdy> "

Define WP for k > 1 as the sap
Turns out that such spaces are equivalent to Wk,

Proposition 5.21. H*? = W*P whenever k is a nonnegative integer.

Proof. It suffices to show equivalence of norms. Suppose f € W*P. We appeal to the Mikhlin
multiplier theorem, which says that if 7 is a smooth bounded function s.t. |x|¥|V¥m| is bounded
for 0 < k < 5 +1, then m is an L? multiplier. d

5.9 The Laplacian: A Case Study

One of the most important linear operators in analysis is the Laplacian operator —A, which repre-
sents the negative sum of the second partial derivatives of a function. We do a brief, yet in depth
summary of the operator and its spectral and analytic properties.

Since not every function is differentiable, we first want to clearly define the domain of —A. Since
we want an inner product structure, for now we consider —A : A < L*(R") — L?(R"). Natural
choices of domain are A = Ck (R™), H*(R"), for k > 2. The next proposition shows that one of
these is considerably more natural than the others.

Lemma 5.38. For A = CP(R"), —A is closable with the closure (—A, H?(R™)).

Proof. 1t suffices to show that for (f,,, —Af,) — (0,¢) in L?, one has & = 0. By Fourier transforms,

Igl2 = limy—o0 H\CanHz and anHZ — 0. But we in fact know that fn is in the Schwartz space, so
we immediately see that ||g[>» = 0. To see that the closure contains H2, we note that C{° is dense in
H? in the H2-norm. Finally, the fact that H? (R™) is closed as a domain follows from the fact that if

fn — f,—Afy — g € L2, then on the Fourier side, |&|? fn — |¢]? ]? = gin L? (as can be easily checked
on compact subsets) and the claim follows. O

We now want to show that the Laplacian is self-adjoint. But in fact, our definition of self-adjointness
is quite tricky to demonstrate, so we need a simpler criterion first.

Lemma 5.39 (Criterion for Self-Adjointness). A closed symmetric operator T is self-adjoint iff ker(T* +
i) =0iffIm(T +i) = H.
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Proof. Note that a closed operator has closed kernel and image, so the equivalence of the last two
statements is equivalent by the orthogonal decomposition of a Hilbert space. To show D(T*) —
D(T),let f € D(T*),¢ = (T* +1i)f,and g € D(T) s.t. ¢ = (T +i)g. Then, since T*g = Tg, we get
(T*+1i)(f—g) =0,ie. f=ge D(T). O

Corollary 5.39.1. A closed symmetric operator T is self-adjoint iff o(T) < R.

Remark 5.29. The same proof applies on a bounded open subset of R".

Proposition 5.22. The Laplace operator is self-adjoint —A : H*(R") < L2(R") — L?(R") with essential
spectrum o(—A) = Oess(—A) = [0, 0).

Proof. Notice that the Laplace operator is the Fourier multiplier of |¢|>. We borrow from the the-
ory of multiplication operators, which states that the spectrum of a multiplication operator is its
essential range, i.e. the support of the pushforward measure f.u, where eigenvalues A are s.t.
u(f = A) > 0. Since the range of |¢|? is [0, ), so is the spectrum of —A, which is easily seen to
be purely continuous. Moreover, since the spectrum is real and the operator is easily seen to be
symmetric, the operator is self-adjoint. O

Remark 5.30. This method easily allows us to construct eigenfunctions any (generalized) function sup-
ported on {x : f = A} is the Fourier transform of an eigenfunction. For instance, we identify the plane
waves e as "eigenfunctions” of the Laplacian with eigenvalues A.

We can now generalize our approach to the Schrodinger operator —A + V(x) : H*(R") < L?(R") —
L?(R"). In general V may not be bounded, so the multiplication operator of V might be an un-
bounded operator.

Proposition 5.23. —A + V essentially self-adjoint on H> n D(V) for Ve L2 ,V > 0.

loc”

Proof. The same argument as before shows that the operator is closable on C°. The same argument
as before shows that H? is contained in the closure. Finally, the same argument as before shows
that —A + V is closed on L.

For multiplication by V to be symmetric, V clearly has to be real-valued. Finally, we get that the
spectrum of the operator depends on V - namely, 0pss(—A + V) is the essential range of —A + V,
and eigenvalues are values A where pu(|¢|> +V = A) > 0. O

Example 5.11. Take V

5.10 Integral Transforms

Of particular interest are various objects defined in terms of integrals. In this section, we present
a few key example and how one may establish properties of these objects using real and complex
analysis techniques.

Definition 5.31. A integral transform is a map of the form

T(f)(x) = / K(x,y)f(y)dy,

where K(x,y) is called the kernel of the transform.
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Typically, one wants to establish that a certain integral transform is well-defined, and then that it
is a bounded map between, say, L? spaces. To establish these kinds of general facts, one needs the
following lemmas.

Lemma 5.40 (Minkowski’s Inequality).

[ ey

< / £ Co) a3
LP (dx)
Proof. By Holder,

[ | [ #eay|isonax = [ [ s mlseolisiy < [ 176 01van sl
so the inequality follows from the fact that |||, = sup [ hkdx for k € L9, |k|, = 1. O

Example 5.12.  (a) The Fourier/Laplace transforms are integral transforms with kernels e=27¢* =5,
(b) The Poisson integral formula is given by an integral transform with the Poisson kernel P.(0) =

. 1-r
1-2rcosf+r2"

(c) The convolution f « g can be thought of as an integral transform with kernel f or g, respectively.

5.10.1 The Gamma Function

Consider the gamma function defined by

o0
I'(z) =/ = 1etdt.
0

First note that this integral converges for Rez > 0, since

o0 o0 1 o0
z / Flemtdt = / e tdt = / e tdt + / tFetdt,
0 0 0 1

where the second term is bounded by [[” t"e~!dt < oo for n € IN, and the first term is clearly
bounded as well. Moreover, one immediately sees that I'(1) = 1 and zI'(z) = I'(z + 1). We thus
note that I'(z) = (z — 1)!. Now, interestingly, one may attempt to define I'(z) for Rez < 0 by the
above relation I'(z — 1) = g Then, I'(z) is well-defined everywhere except at the nonpositive
integers —n,n > 0.

Lemma 5.41. I' : C — C is meromorphic with simple poles at —n,n = 0.

Proof. Since we are asked to prove holomorphicity, we use Morera’s theorem. Clearly, I' is contin-
uous everywhere where it is defined. Moreover, I is holomorphic in the right half-plane by Fubini
and Cauchy’s theorem, since

o0 o0
// et dtdz :/ e_t/e(z_l)lntdzdt =0.
AJo 0 A

Then, we proceed strip by strip, as it inductively suffices to show I' is meromorphic in Rez > —1.
Any triangle A in Re z > —1 not containing 0 may be split into triangles contained in —1 < Rez < 0
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and triangles contained in Rez > 0 with one of the sides within € of the boundary Rez = 0. The
contour integrals match on the boundary by continuity, and by Cauchy’s theorem the integral
in the strip and the right-half plane vanish, so by Morera’s theorem, we are done. To show the
singularities at —n are simple poles, notice that

. s L I(z4+n+1) (="
Z_l}lir:li(z +n)l(z) = z_l}glﬁ(z +n)['(z) = Zl_lgln Crn—D.z+1)z '
showing that the poles at —n are simple. O
Proposition 5.24. T'(z) =1~ 1 + X7 (<1)" (5 — 71
Proof. Mittag-Leffler. O

Proposition 5.25 (Reflection Principle). I'(z)I['(1 —z) = =2 for z ¢ Z.

sin 71z

Proof. By Fubini,ifu =s+t,0="1

sl

© o NN A 0 00 z—1 T
I'(z)I(1-2z) = / tz_le_tdt/ s fe *ds = / / <) e~ ldtds = / / ——e "dudv = — ,
0 0 o Jo \s o Jo 1+0 sin 71z

where the latter integral may be evaluated by contour methods. Namely, if 0 < Rev < 1, the
integral converges absolutely, so we integrate along a keyhole contour with a branch cut on the
positive real axis. At —1, the residue is (—1)>! = ¢™(*~1) = —¢™2 On the large and small circles

of radii R,e > 0, the function is asymptotically like % — 0as R — o and % — Qase — 0.
Finally, on the other side of the keyhole, the integral is

do = _62711211

© o(z—1)(log [o|+(i(6+27))
/0 1+v

where [ is the value of the desired integral. Thus,

‘ i 2711 T
I(1—e?™2) = 2mie™ ™ — [ = — — = — .
e’E — e ME sInTTZ

Corollary 5.41.1. I'(z) has no zeros, i.e. ﬁ is entire.

Corollary 5.41.2. I'(3) = /7.
Proposition 5.26 (Stirling’s Formula). I'(n) ~ v2mn(%)".

5.10.2 Hilbert Transform

Definition 5.32. The Cauchy principal value (p.v.) of a function f with a singularity at a point b or at

o0 is defined as

o) b—e b+y
p.v./ f(x)dx = lim lim f(x)dx + f(x)dx.
-0

€=01=%0 Jp_y b+e

Note that p.v. [* f(x)dx = [* f(x)dx if f is Lebesgue integrable.
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Definition 5.33. A function f with a well-defined Cauchy principal value over all smooth compactly sup-
ported test functions defines a distribution p.v.(f) : CX — R given by

po.(f)(¢) = po. /R F@)g(x)dx

<P()

—€

Example 5.13. p.v.(2) e &, for
x < 2€[¢]o0

and

P09 4 « x|,

x[=1

Proposition 5.27. For f,¢ € L' n C(RR), even, ¢(0) = 1, we have

po (L) - L0100 1,

Proof. Follows directly from definition. O

Theorem 5.42 (Sokhotski-Plemelj Formulae). Let ¢ be a Holder continuous function defined on a closed
curve C < C. Then, the Cauchy integral

_ [ ¢
f(z0) = Cz—zod
defines a holomorphic function f € H(C\C), with limits f+ as z — C from inside/outside equal to

S 4

Ct—Z

fel) = £5(2) + 5—po.

2711

In particular, on the real line one has

lin% f()dx—+z7tf +pv/f
€—
Proof. Defining ¢ = 27if(0) yields the second claim from the first one. O

Definition 5.34. The Hilbert transform of u is defined as

H(u)(x) = ;p.v./oo u(y) —dy = — !

XY nix’
where the convolution is taken in the sense of tempered distributions.

Proposition 5.28. H is Fourier multiplier with symbol —ix (o)
Proof. O

It turns out that the Hilbert transform is a bounded operator on L?, but the proof technique can be
generalized to a much larger class of singular integral operators of convolution type.
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Definition 5.35. An integral operator of convolution type with kernel K € LI (IR") is said to be of
Calderon-Zygmund type if

KeL® Ke C(RM{0}),|VK(x)| « |x|~+D.

Theorem 5.43. A Calderon-Zygmund type operator is of strong type (p, p) and weak type (1,1) for 1 <
p < .

5.11 Ergodic Theory

Several questions on the qualifying exam pertain to ergodic theory. We briefly review the main
facts here.

Definition 5.36. A measure-preserving transformation T : X — X on a probability space is a map
such that u(T~Y(A)) = u(A) for all measurable A.

Definition 5.37. A measure-preserving transformation is said to be ergodic if u(T~(E)AE) = 0 implies
u(E)=0o0ru(E) =1.
Lemma 5.44. For « € R\Q, {an mod 1: n € N} is dense in [0, 1].

Proof. By plgeonhole prmClple subdividing [0,1] into N intervals, there are j, k € IN such that
(j—k)a mod1e (— N, —) The rest follows by adding this number to itself at most N times. [

In fact, there is a much stronger definition for a subset.
Definition 5.38. A sequence in [0, 1] is said to equidistributed if lim, o p(a, € [c,d]) = d —c.

Proposition 5.29. A sequence is equidistributed in [a,b] iff lim,_o +; SN flay) = f f(x)dx in
the Riemann integral sense.

Proof. Equidistribution is equivalent to the Riemann integrability of indicator functions. Con-
versely, approximating f by step functions below and above by linearity yields Riemann integra-
bility. 0

Theorem 5.45 (Weyl’s Equidistribution Theorem). A sequence is equidistributed in [0, 1] iff

z

lim — Z 27iay _
N—owo N

Proof. If a sequence is equidistributed, thiis follows immediately by the Riemann integrability
criterion. Conversely, if the criterion holds, it holds for every trigonometric polynomial, and by
Stone-Weierstrass, for (almost) every continuous function. Then, approximating step functions by
continuous functions as before, the proof concludes. O

Example 5.14. Let « € R\Q. Then,

N
1
2mion
Z - eZm'a) -0,

so multiples of an irrational number are in fact equidistributed in [0, 1].
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The importance of ergodic theory are the so-called ergodic theorems, which state that for ergodic
transformations, the average in space and in time are identical.

Theorem 5.46. Let T : X — X be a measure-preserving transformation on a finite measure space and let
f € LY. Define the time and space averages

-~ . 1 N k — 1
o = Jim 3 33507 = | fan.
Then f € LY, and if T is ergodic, f = f a.e., with [ fdu = ffdy and f = foT.

6 Complex Analysis

6.1 Holomorphic Functions
The following are the equivalent definitions of a holomorphic function:
Definition 6.1.  (a) A holomorphic function f : U — C is complex differentiable, i.e.
1 F2) = f(z0)
>z Z— 2
exists.

(b) A holomorphic function f : U — C is a complex function given locally by a power series f(z) =
o f"(z) (z

ne0 Tt — z0)" that that converges normally to f on |z — zo| < R, where R is the smallest
distance to where f is undefined.

(c) A holomorphic function is one satisfying the Cauchy-Riemann (C-R) equations: if f = u + iv,
Uy = vy and uy = —0y.

To prove this, we first need to prove a fundamental result known as the Cauchy-Goursat theorem.
Theorem 6.1 (Goursat Theorem). If f is complex differentiable in the sense of (a) on an open region U,

for any triangle A contained in U, [, f(z) = 0.

Proof. For contradiction, suppose not, i.e | [, f(z)dz| > e. Iteratively subdivide the triangle into
subtriangles, and by pigeonhole principle, pick a point z* in a sequence of triangles where | [, f(z)dz| >
4+~ But since each triangle has half the diameter and perimeter of the previous one,

e’diam(Ao) |A0|
4n ’

] [ Feaz— (7)) — 2z

< e’/ |z — z*|dz < €/diam(A,)|Ay| =
which is a contradiction for small enough €’ O

Corollary 6.1.1. Approximating an arbitrary simple curve by polygons, which are further subdivided into
triangles, and approximating null homotopic curves by simple closed curves implies Cauchy’s Theorem:
for f: U — C complex differentiable and «y a closed C* curve inside U homotopic to a point,

[yf(z)dz =0.
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Theorem 6.2. (Cauchy’s Integral Formula and Estimates) If f is holomorphic on U and vy is a circle of

radius R in U, -
() (5 — ”'?5 _fle
" (20) 21ti J,, (z — z0)"+1 dz

and
n'M

(n)
£ z0)] < T

Proof. WLOG, suppose 7 is a circle. For n = 0,

f(20) + f(20)
Z—2p

— 0,

dz — 2mif(zp)

as the left part is bounded (since f is differentiable) and the right part can be evaluate to be
27if(zp). Then, by the geometric series formula

fw)= 5 D w0z = Y-z § L

n=0 n=0 Y
where the change in integral and sum is justified by taking a small enough circle . O
Corollary 6.2.1. This argument shows that a holomorphic function f has a power series expansion that
is locally uniformly convergent in any circle that the singularities of f. Moreover, any formal power series

is a sequence of holomorphic functions that converges locally uniformly, and thus defines a holomorphic

function on its radius of convergence R = ; 1| T . This, along with a simple calculation showing
imsup |a, %

that the C-R equations are equivalent to complex differentiability, shows that the three definitions of a
holomorphic function are equivalent.

Remark 6.1. Introducing the Wirtinger derivatives
1 . 1 .
0, = E(é’x —1i0y), 0z = E(é’x +10y),

C-R implies that f is holomorphic iff Ozf = 0, and f'(z) = 0.f(2).

Remark 6.2. On the boundary of the disk of convergence, the power series for a holomorphic function f can
converge in any way possible - absolutely, conditionally but not absolutely, or it may diverge at any subset
of dD. For example,

(a) 1 =Y, z" diverges everywhere on the boundary.

(b) — log(l —z)=>.", % converges everywhere conditionally except at z = 1.

(c) Yoy i—z converges everywhere on the boundary absolutely.

If f : U — C is holomorphic, we write f € H(U). One can check that a given function is holomor-
phic using Morera’s theorem:

Theorem 6.3 (Morera’s Theorem). If f : U — C is continuous and [, f(z)dz = 0 for every triangle
A c U, then fe HU).
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Proof. Define F(zg) = |. y f(z)dz, where <y starts at a fixed point a and ends at zp. The conditions,
along with a polygonal approximation argument, imply that F is complex differentiable and so is
holomorphic. By the fundamental theorem of calculus, since F/ = f and analyticity of F, it follows
that f is holomorphic. O

Corollary 6.3.1. The proof shows that a holomorphic function f on any domain U has an antiderivative
F iff % f = 0. In particular, every holomorphic function locally has an antiderivative. The necessity of

the zero integral condition follows from the fact that by the Fundamental Theorem of Calculus, ¢ f(z) =
F(zp) — F(zp) = 0.

The following are main results and theorems that frequently appear on the analysis qual:

Theorem 6.4. (Maximum, Minimum Modulus and Mean Value Formulae) If f is holomorphic on U and
7 is a circle of radius R in U,

1 1 [ , 1 1 [ R
f(z0) = 5= fE) 4o L fzo+Re")d0 = —s ﬁg(o’m f2)dz = — /O /0 f(re®)rdrds.

2mi J, z — zp 27 Jo

If |f| attains a (local) maximum on U, f is constant. If |f| is bounded below on U by a positive constant,
then if |f| attains a (local) minimum on U, f is constant. Moreover, if f is continuous on oU, |f| attains
its maximum and (if f has no zeros in U) minimum on oU.

Proof. Mean value formulae follow immediately from Cauchy’s integral formula, and directly im-
ply the maximum and minimum principles. O

When discussing convergence of complex functions, the most natural setting is that of locally
uniform convergence:

Definition 6.2. A sequence f, : U — C converges normally to f : U — C if f, — f uniformly on
compact subsets of U.

Proposition 6.1. If f, € H(U) and f, — f normally, f € H(U) and f,gk) — &) normally.

Proof. The first part follows from Morera’s theorem. The second part follows from Cauchy’s Inte-
gral Formula. O

The following is a fundamental characterization of holomorphic functions.

Theorem 6.5 (Open Mapping). Every nonconstant holomorphic map is open, i.e. the image of an open
set is open.

6.2 Exercises

If f € H(ID) has a pole at z = 1, then the Taylor series for f diverges everywhere on the boundary.

Proof. Ifnot, > a,z" = c for some |z| = 1, soa, — 0, so considering the series b, = a, —a,_1, we see
that >, b,z" = (1 —2z) > a,2" = (1 —2z)f(z). Butas z — 1, by Abel’s theorem the former converges
to 0 and the latter cannot converge to 0 because of the pole, which is a contradiction. O
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Fall 2014 Problem 9 Let ) — C be an open connected set. If f, is a sequence of injective
holomorphic functions on (2 that converges normally to f, then, if f is nonconstant, f is injective.

Proof. Note that f is injective iff f* does not vanish on U. In particular, since f,, converges locally
uniformly to f, f;, also converges locally uniformly to f’. Suppose f is not injective. Then, f’(zo) =
0 for some z( € U. In particular, by the argument principle, over a sufficiently small circle of radius
v around zp on which f’ does not vanish, ﬁ /. y J% =1, but ﬁ /. . J}—':‘,: = 0 for all n. But this is a
contradiction, since |f’| is bounded on 7, so for € < inf, |f’|, for sufficiently large n one has that

" "

YA j}—, uniformly, contradicting the difference in the integral values. O

Spring 2014 Problem 9 Prove that if f, — f normally on an open connected set O = C, f,, f
holomorphic, f,(z) % 0, then either f is either identically zero or vanishes nowhere.

Proof. Essentially a special case of the last problem. O

6.3 Zeros and Poles

Lemma 6.6 (Isolated Zeros). The zeros of a nonzero holomorphic function have finite order and are iso-
lated.

Proof. Since a holomorphic function is defined locally by a power series, f(z) = zFg(z) where g is
analytic and g(0) + 0. This shows that the zero has finite order and is isolated. O
Corollary 6.6.1 (Identity Lemma). If f, g € H(U) agree on a set with a limit point in U, f = g.
Definition 6.3 (Poles). A complex function with isolated singularities has three types of singularities:

(a) A singularity zg is removable if lim,_,,, f(z) = f(zo).

(b) A singuarity z is a pole of order k if lim,_,, (z — zo)"|f(z)| = oo for 0 < n < k — 1 but not for
n=k.

(c) An essential singularity if neither is true.

Lemma 6.7 (Riemann’s Theorem on Removable Singularities). If zg is an isolated singularity and f
is bounded in a neighborhood of zo, zq is a removable singularity.

Proof. Note that f(z)(z — zo)? is holomorphic at zg, since it has zero derivative. Thus, f(z)(z —
z0)? = h(z), where h(zy) = h'(zo) = 0. We thus have that f(z) = Me) gy + az(z —zg) + ... O

T (z=20)? T

Definition 6.4. A meromorphic function f : U — C is a function holomorphic outside a discrete (that
is, closed countable) set of poles.

Lemma 6.8. Every meromorphic function on C is a ratio of two entire functions.

Proof. Given a meromorphic function f with poles a,, by Weierstrass’s Theorem, there exists a
function g that has zeros a,,. Then, fg = h is holomorphic, so h = % ]
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Here are three important results that explain the behavior of meromorphic functions near singu-
larities:

(a) Little Picard’s Theorem: The image of an entire function misses at most one point of C.

(b) Casorati-Weierstrass: The image of a function in a neighborhood of an essential singularity
is dense in C.

(c) Great Picard’s Theorem: In a neighborhood of an essential singularity, a holomorphic func-
tion takes on all except at most one value of C infinitely many times.

(d) Generalized Great Picard: Any holomorphic map M\{w} — CIP attains all except at most
two values of CIP infinitely many times in any neighborhood of w.

Some important corollaries follow when considering the singularity of a function at oo.
Proposition 6.2. If f is entire and has a removable singularity at o, then f is constant. If f has a pole at

o0, then it is a polynomial.

Proof. The first claim follows immediately from Liouville’s theorem. For the second claim, we see
that f extends to a meromorphic function on CIP, so it is rational and has no poles in C. Thus, it is
a polynomial. O

Remark 6.3. If f is entire and a polynomial, then by the Fundamental Theorem of Algebra it attains every
value. If not, then it has an essential singularity at o, so since f never attains the value co of CIP\{c0}, we
see that the generalized Great Picard theorem implies the Little Picard Theorem.

6.4 Infinite Products

Recall that by the Weierstrass M-Test, the power series for a holomorphic function converges nor-
mally on the disk of convergence. In latter sections, we are interested in considering the conver-
gence of infinite sums and products for meromorphic functions.

Definition 6.5. Given a countable subset X = {a,} < C and a branch of logarithm with a branch cut that
avoids X, we say [ [7_, an converges iff >~ 1 log(a,) converges. If the sum converges to —oo, the infinite
product is said to diverge to 0.

Remark 6.4. Note that if a, > 0 for all n, since

Zan < H(l +a,) < e

then [ 1,1 (1 + a,) converges iff >, a, converges.

Corollary 6.8.1. A product [[;_;(1 + ay) is said to converge absolutely if [[,_,(1 + |a,|) converges.
Then, the remark implies that ., a, converges absolutely if and only if [ [, (1 + a,) converges absolutely.

Lemma 6.9. The Cauchy criterion for convergence of products is as follows: the product converges if for
any € there exists a K s.t. | [ ]} ax — 1| < € for n,m > K.

Proposition 6.3. If a product converges absolutely, then it converges. In particular, if a, > 0, [ [(1 — a,)
converges iff Y, a, converges.
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Proof. The first statement follows from the Cauchy criterion and the inequality

m
<[] +a)) -
n

Then, if >} a, converges, [ [(1 — a,) converges absolutely and therefore converges. Conversely, if
>.a, diverges and [ [(1 — a,) converges, a, — 0 so since (1 +a,)(1 —a,) <1-— a2 =0, we get that
[IA=ay)(1+a,) <1,s0]](1—a,) — 0, which is a contradiction. O

m

[Ja+a) 1] <

n

Remark 6.5. The examples a, = (where the product diverges to 0, but the sum converges) and

1
3]
Ay = %, Aopi1 = \/% (where the product converges, but the sum diverges) show that when we have
both negative and positive terms, the convergence of [ [(1 + a,) and ) a, is unrelated.

Corollary 6.9.1. An infinite product [ [;_1(1 + fu) of holomorphic functions converges to a holomorphic
function if >, | fu| converges.

6.5 Weierstrass, Hadamard, Laurent, Mittag-Leffler, Jensen

We are often times interested in seris/product expansions for holomorphic/meromorphic func-
tions. Their existence is provided through the following theorems:

Theorem 6.10 (Laurent Series). There exists a unique annulus at zo on which a function f with an
isolated singularity at zo has a Laurent series of the form

0

f@) = ) aulz—z20)",

n=-—0oo

where a, = 5= ¢ (z_fz (UZ)),, +1dz that converges normally on the annulus. If infinitely many negative terms of

the Laurent series are nonzero, f has an essential singularity at zo. Otherwise, if a_y, is the first nonzero
coefficient, f has a pole of order m, and if the expansion has no negative terms, f has a removable singularity.

Moreover, R* = ﬁ are the inner and outer radii of the annulus. 3. o Anz" is called the principal
imsup |a+,|7n

part of f. Moreover, if if f is a holomorphic function in an annulus, then its Laurent series converges
normally to f on that annulus.

Proof. First, consider a formal Laurent series with R* defined as in the proof. Then, by the Weier-
strass M-Test, the partial sums converge locally uniformly and thus define a holomorphic function
on the annulus R~ < |z — z9| < RT. Conversely, if f is a holomorphic function in the annulus, one
applies Cauchy’s formula on the inner part of the annulus and the upper part of the annulus, on
the intersection, f is given by its Laurent series, with the partial sums converging normally. [

Example 6.1. Consider the function e — —L. This function has two Laurent series - one in the annulus
0 < |z| < 2, given by

and one in the annulus |z| > 2




Arguably the most fundamental result regarding meromorphic functions is that of the residue
theorem:

Definition 6.6. Let f be meromorphic, and zq be a singularity of f. Res(f,zo) = a_1 = |, o f(2)dz is called
the residue of f at zy, where <y is a curve around zy with no other singularities in the interior. If f has a
removable singularity, the residue is 0, and if it is a pole of order n, the residue may be computed as

1 dnfl

Res(f, z0) = zhj?o mdz” 1(z —20)"f(2).

Theorem 6.11 (Residue Theorem). Let f be meromorphic. Then, for any simple contour <y oriented

counterclockwise,
/f(z)dz = 27T2Res(f a
Y a

where a ranges over all singularities of f inside 7.

Definition 6.7. A holomorphic function f is said to be of exponential order n if n is the infimum of a
such that f(z) « el?l".

Theorem 6.12 (Weierstrass/Hadamard Factorization Theorems). If f is an entire function with nonzero
zeros a, and a zero of order m at 0, there exists an entire function g and a sequence of integers n such that

o0
4
Z) = Zmeg(z) H Epn(ﬁ)’
n=1

where o
En(z) = (1 —z)eXi-17n,

where the convergence of the product is normal on C. Moreover, if f is of order n, then it suffices to take
g(z) to be a polynomial of degree n and py = p, where p is the smallest integer such that

Z ’an’p+1

converges.
Remark 6.6. Note that the convergence of the product is guaranteed since |Ep (=) — 1] « \é\”“.

Theorem 6.13 (Mittag-Leffler Theorem). Any meromorphic function f : U — C with a set of singular-
ities E without a limit point in U can be written as f = g + h, where g is holomorphic on U and for any
a € E, h— pa(z) has a removable singularity at a, where p,(z) is the principal part of h at a. In particular,
every function has the normally convergent expansion

)+ 2 Pa, (2) + gu(z

where g,(z) are polynomials chosen to make the sum converge. Particularly, if f only has simple poles, is
defined at 0, and is uniformly bounded on a sequence of circles with radii tending to oo, then

Zz_an

where by, is the residue of f at a,.
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Example 6.2.  (a) sinz is a entire function of order 1 with a zero of order 1 at 0. Since the zeros are £nrt,
and thus are asymptotic to the harmonic series, clearly p = 1 suffices. Thus, by Hadamard,

0
sinz = ze™+? H(l - i)eﬁ(l - i)e’niﬂ = ze"th H(l -z

n=1 n=1

(b) By the same exact logic,

_ az+b
Cosz =e¢ ||<1—(n_1)27_[2>/
2

where plugging in 0 and using the fact that cos z is even yields

L z2 L 472
COSZ:H(l_(n—W> :H<1_(2n+1)2nz>'

n=1 n=0

(c) €% — €' is an entire function of order 1. It has zeros whenever e*17) = 0, i.e. z = 3% Then,

or — eiz _ Zeaz+b ﬁ (1 o ZZ)
2nnN2 |7
ni (155)
V2 —

and by standard techniques we conclude that b = In(1 —i) =
odd, —z(1—a) =z(i—a),ieea—1=i—a = a=1+1,s0

o7 — ¢i% = Ze(1+z)z+(1—1) 1_[ <1 _ (2721")2> )

n=1 1—i

% and since e*~% — ¢'#79% ig

Example 6.3. (1) tanz has simple poles at z = 7t(+n + 3) for n > 0 and satisfies the uniform bound-
edness condition, so by Mittag-Leffler, with residue —1 at every pole, one has

I i B 1 B 1 B i 8z
= z—n(n+3) )y & r?2n+1)2 — 422

z—m(—n—

N
NI

Alternatively, one may use the Hadamard factorization for cos z and the fact that tanz is the loga-
rithmic derivative to conclude

- -8z
—t = ,
anz = 3, (2n + 1272 — 422
n=0
which yields the same expansion.

8(r2(2n+1)2+42%)

(b) Doing term by term differentiation of the above series yields sec’z = >, TR =i
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6.6 Montel and Runge
We now define a version of compactness for families holomorphic functions.

Definition 6.8. A family F < H(U) is said to be normal if every sequence in F has a uniformly conver-
gent subsequence.

Montel’s theorem provides a simple description of normal families:

Theorem 6.14 (Montel’s Theorem). A family F < H(U) is normal iff it is locally uniformly bounded.
Proof. The forward direction is essentially an application of Arzela-Ascoli, using the bounds on
the derivative f’(z) from f(z). The converse follows since precompact sets are bounded. O]
An interesting parallel to Montel’s Theorem is the following statement:

Theorem 6.15 (Fundamental Normality Test). A family 7 < H(U) of functions all omitting the same
two values a, b € C is normal.

Finally, we want to provide an analogue of such convergence for meromorphic functions, pro-
vided in the form of Runge’s theorem:

Theorem 6.16 (Runge’s Theorem). If f € H(U) and A is a set with at least one value from each connected
component of C\K, where K < U is compact, then there exists a sequence of rational functions with poles
in A that converge uniformly to f on K.

6.7 Automorphisms of Riemann Surfaces

Recall the construction of the Riemann sphere as CIP = C u {c0}. We are interested in studying
the structure of simply-connected Riemann surfaces (complex manifolds). This is made extremely
easy with the following theorem:

Theorem 6.17 (Uniformization Theorem). Every simply-connected Riemann surface is conformally
equivalent to CIP,C, or D.

Thus, it suffices to understand holomorphic/meromorphic maps and automorphism between
each of these three Riemann surfaces. We first focus on CIP.

Definition 6.9. A Mobius transformation is a map of the form

az+b
f& =

satisfying the following properties:

(a) The Mobius transformations form a group isomorphic to PGL,(C) according to
a+ bi | b
c+di c d|’

(b) A Mobius transformation is uniquely defined by three points.

() If f(z) = &85, f1(2) = 22K

Proposition 6.4. Let f : CIP — CIP be meromorphic. Then, f is a rational function.
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Proof. Since CIP is compact, any nonconstant f has finitely many zeros. Moreover, f has finitely
many singularities, and each singularity is a pole (otherwise f is not meromorphic on C, i.e. holo-
morphic on CIP). Multiplying by the poles and dividing by the zeros yields a bounded function
on C, so by Liouville it is constant. Thus, f is rational. O

Corollary 6.17.1. All diffeomorphisms (that is, complex automorphisms) of CIP are Mobius transforma-
tions.

Proof. We know that f has exactly one zero and one pole and is rational. ]
Proposition 6.5. The diffeomorphisms of C are linear functions.

Proof. Note that by Casorati-Weierstrass, f does not have an essential singularity at oo, since the
image of f in a neighborhood of oo is not dense in C by the open mapping theorem. Thus, f is a

polynomial. The only injective polynomials are linear functions. The result then follows. O
Proposition 6.6. The automorphisms of D are the Blaschke factors f(z) = e’ Z=L.

Proof. Suppose f(0) = 0. Applying the Schwarz lemma to f, f ~1, we get that |[f'| = 1, s0 f(z) =
¢%z. Otherwise, map the zero a of f to 0 using a Blaschke product. O

Remark 6.7. Blaschke factors are very special because they replace a zero at 1 with a pole at a, and also have
magnitude 1 on the unit circle, so multiplying by them does not change the magnitude of the unit circle.

Proposition 6.7. There are no holomorphic maps CP — C,C — D.

Proof. CIP is compact and C is not. The latter is the statement of Liouville’s theorem. O

6.8 Jensen’s Formula and Bounds on Zeros

Since complex functions are so well-behaved, it is natural to ask if one may obtain certain bounds
on their growth as it relates to the number of zeros. One first needs the following absolutely
fundamental lemma.

Lemma 6.18 (Schwarz Lemma). Let f : ID — D be holomorphic and f(0) = 0. Then, |f(z)| < |z|, and
|f(0)| < 1. If equality holds in either case, f(z) = e"z.

Proof. Define g(z) = @ Then, lim|;_,; [g(z)| = 1, so by the maximum principle on {|z| = r}
and sending r — 1, we can conclude that [g(z)| < 1,i.e. |f(z)] < |z| and |f'(0)] = |g(0)] < 1.If
equality holds, then by open mapping theorem/maximum principle, f has constant magnitude

and so f(z) = ez O

Lemma 6.19 (Schwarz-Pick Lemma). If f : ID — D is holomorphic,
f(z1) — f(22)
1—f(z1)f(22)
with equality holding iff f is a Blaschke factor, and
FeP 1
1=-1fz)P ~1-]zl?

21— 122
1—522

7
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Proof. Consider the Blaschke factors 1, T sending 0 — z1,0 — f(z1), respectively. Then, 7,0 f o
7, (2) satisfies the assumptions of the Schwarz lemma, so replacing z — T(z,) yields the desired
inequality, and sending z; — z; yields the latter inequality. ]

Definition 6.10. The pseudohyperbolic metric on D is defined as p(z, w) = . The Schwarz-Pick

1 —ZWw
lemma implies that with respect to this metric, analytic functions on ID are Lipschitz.

Theorem 6.20 (Borel-Caratheodory). An entire function is bounded by its real part according to

2r R+r
< M 0
sup|f| < z——M+ 2= f(0)

|z|<r

for M = sup, g Ref.

Proof. If f is nonconstant, the idea is to apply the Schwarz lemma. Suppose f(0) = 0, and note
that since Re f is a harmonic nonconstant function, M > 0. Then, the image of f lies in the shifted
half-plane Re z < M, which can be mapped to the disk of radius R using

R
9(z) = z—zM'

Thus, Schwarz lemma yields that for |z| < 7,

Rf(z) ’ 2r
r = su M.
’f( —2M |z\<€|f| R—r
In the general case, just apply the proof to f(z) — f(0). O

One of the most important functions is the complex logarithm, defined as log z = log |z| 4+ iArg(z).
The issue is that the argument of a complex number is not well-defined up to multiples of 27,
requiring a branch cut where log z is undefined. The standard choice is to make the branch cut at
the negative x-axis and let Arg(z) € (—, 7r), which corresponds to the Log z. However, one may
shift the branch cut as is necessary, as long as the domain does not contain a curve around 0.

The key theorem that relates the zeros of a holomorphic function to its growth is known as Jensen’s
formula:

Theorem 6.21 (Jensen'’s formula). For a meromorphic function f on U and vy a circle of radius R centered
at zg and contained in U,

log | f(z0)] = ~- / log|(2)1d+ Y 1o 2= 21

where ay and by are the zeros and poles of f in the interior of <y, respectively.
Proof. By scaling and shifting, one may assume that y = 0D, i.e. zp = 0, R = 1. Multiplying f by
appropriate Blaschke factors makes f nonzero holomorphic on D at no cost on the right, since the

Blaschke factors have magnitude 1 on the boundary and log1 = 0, and a cost of log |p| on the left
(since the Blaschke product is evaluated at 0). Thus, the problem reduces to showing

% /a log|fldz = log(If (0)))
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which follows since log |f| = Relog f is a harmonic function and thus satisfies the mean value
property. ]

Corollary 6.21.1. The most useful version of Jensen’s formula is that for holomorphic functions, which

states
R

s | 108112z = 10g a0 + Ytog [ X

|a — zo|

Crucially, this formula relates the number of zeros to the growth of an entire function.

Proposition 6.8. If f is entire of order A, if N is the number of zeros of f in B(0, R), then N « R4.

Proof. Consider Jensen’s formula applied to a circle of radius 2R. Then,

2R

1/ A
— [ (2R)?dz = lo 0)+ ) log —.
o [ R) 70+ Xlog

For every zero in B(0, R), the term in the sum is at least log 2, and for all other zeros the term is
nonnegative, so
Nlog2 « R%.

O

Example 6.4. There is no nonzero entire f such that f « e and f (n%) = 0 for all n > 0. This is because
N » R3 » R', and 1 is the order of f.

6.9 Phragmen-Lindelof

Often times, one wants to bound a holomorphic function defined on some unbounded region in
the complex plane. For bounded regions, one may appeal to the maximum modulus principle, and
for unbounded ones, the argument of the Hadamard three-lines lemma motivates the following
set of propositions.

[Imz

Proposition 6.9 (Phragmen-Lindelof). If f « e¢’™" s holomorphic in the strip a < Rez < b,
bounded by M on the edges of the strip, then it is bounded by M everywhere, i.e. f satisfies the maximum
principle.

Proof. Multiplying by e~¢", using the maximum modulus principle, and sending € — 0 concludes
the proof. O

Corollary 6.21.2 (Phragmen-Lindelof for Sectors). If f is holomorphic in the sector & < 0 < B and of
exponential type at most ﬁ, then f satisfies the maximum principle.

Proof. Apply Phragmen-Lindelof to f(e'?). O
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6.10 Injective, Proper Functions, and Blaschke Products

Proposition 6.10. If f : U — V is holomorphic injective, then f' does not vanish on U.

Proof. WLOG, suppose zg = 0. Then, write f(z) = a3z + ... = zFh(z) for some analytic function h
such that (0) # 0. This implies that locally, # has a holomorphic k-th root, so f(z) = (zg(z))*. But
the image of zg(z) contains a neighborhood of zero by the Open Mapping Theorem, so there exist

two distinct angles 01, 6, such that g(z1) = re'®1, g(z2) = re'®, and z1¢(z1)* = z2¢(2)* contradicting
the injectivity of f. O

The Inverse Function Theorem guarantees thatif f : U — V is holomorphic and bijective, then the
derivative of f~! satisfies C-R and so f is conformal.
To analyze the zeros of holormorphic functions, we have two very powerful tools:

Theorem 6.22 (Argument Principle). For f meromorphic in U and -y a simple closed curve, the value of

— gﬁy /;((;)) dz = number of zeros - number of poles inside U.

Theorem 6.23 (Rouche’s Theorem). If f, g € H(U) n C(U) and and |g| < |f| on oU, f and f + ¢ have
the same number of zeros in U.
Definition 6.11. A map f : U — V is proper if the preimage of any compact set in V is compact in U.
Theorem 6.24. (The Fundamental Theorem of Blaschke Products)

(a) Amap f : 1D — D is proper iff it is a finite Blaschke product.

(b) Given a sequence a, € D suchthaty,,” (1 —|a,|) < oo, there exists a function f = [, o] z—ay ¢

n=1 g, 1—a,z
H(ID) that vanishes precisely on {a,}.

Proof. Suppose f is proper. Then, f~1(0) is finite, so f has finitely many zeros. Moreover, f~1(B(0, 7))
for r < 1is compact, and so avoids the boundary of the D. Thus, lim|;_,; |f(z)| = 1. Divide by
the Blaschke factors corresponding to those zeros to obtain a map f that does not vanish on the
unit disk and extends to a function of constant modulus on the boundary. The image of a func-
tion of constant modulus is a subset of a circle, so by the Open Mapping Theorem, the function is

constant. Thus,
n
f — 819 H Bi/
i=0

where B; are the Blaschke factors of f. Conversely, if f is of the above form, for any compact set
K < B(0,7),r < 1, f~}(K) avoids the boundary, and so is closed and bounded, i.e. compact.
Finally, for a function f € H(ID) with zeros {a,}, define the partial products as above. The

6.11 Harmonic Functions and Laplace’s Equation
Definition 6.12. Let U c R" be open. Then, f : U — C is harmonic if Au = 0 on U.

Lemma 6.25. If f is holomorphic on U, then Re(f), Im(f) are harmonic on U. Conversely, on a simply
connected subset of C, every harmonic function is the real/complex part of a holomorphic function, unique
up to a constant.
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Proof. One direction follows easily from C-R. Conversely, for u harmonic, define f = u, — iu,,.
Then, f has a primitive F(z) = f(z0) + [ f({)d for some zg € U. If U(z) = ReF, F'(z) = Uy —
ily = uy — iuy, so U(z) = u(z) for all z. O

Remark 6.8. This does not necessarily hold for non-simply connected regions. As a counterexample,

log A/x? + y? is harmonic in the punctured plane but is not a real part of an analytic function. If it did,
. y . e . . . .

then \/x§+y2 —1 Ty would have a primitive. But this function is not path-independent and therefore

not conservative.

Corollary 6.25.1. If f is nonzero holomorphic on a simply connected open U, log | f| exists and is harmonic
on U.

Proof. Take the real part of the antiderivative of fT, O
Theorem 6.26 (Analytic Continuation). If f : U — C is holomorphic and U < V, then, there exists an
analytic continuation of f

Harmonic functions enjoy most of the same properties as holomorphic functions.

Theorem 6.27. (a) A function f : U — R is harmonic iff for any ball B(a,r) < U,

1 1
§(B(a,) /B(M)f (dx = s | ., [0 = fa)

(b) A harmonic function on R" bounded above or below is constant.

(c) (Strong Maximum Principle) If U is connected and f : U — R achieves a local maximum or
minimum, then f is constant.

(d) (Weak Maximum Principle) If U is bounded, connected, and f is harmonic and continuous up to U,
f achieves its maximum and minimum on JU.

(e) (Identity Theorem) Two harmonic functions f : U — R that agree on V < U open agree on U.
(f) A harmonic function is smooth.

Proof. Note that it suffices to prove the mean value property for spheres. WLOG, suppose a = 0.
Then, by the divergence theorem, we compute

d 1 1 1
i 7B o 9] = TG Ly V1) 505 ST fyy M =0

if f is harmonic. Conversely, the mean value property implies that Af vanishes on arbitrarily
small balls, and so Af = 0. Since at r = 0, this function approaches f(a), the claim follows.
WLOG suppose a harmonic function is nonnegative. Then, for x,y € U, pick Ry, R, such that
Ry = Ry + 2|x —y|, i.e. so that B(x,r1) < B(y, r2). Then,

- 1 #(B(y, R2)) 1 _
f0) = B0 RY) /W,Rl)f (4t < (B (x, 1)) n(Bly, R2)) /B@,Rz) ft)at = f).
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and as R; — o, the ratio of the volumes tends to 1, i.e. f(x) < f(y). By symmetry, f is constant.

The identity principle can be proven by showing that the set of points where an analytic func-
tion locally vanishes is both closed and open. If U is connected and f achieves its local maxi-
mum/minimum inside U, then f is locally constant, so by the identity principle, it is globally
constant. ]

Remark 6.9. Note that the mean value formula immediately implies that a normally convergent sequence
of harmonic functions is harmonic, and by the monotone convergence theorem, that a decreasing sequence
of harmonic functions is harmonic.

Remark 6.10. Note that the maximum of two harmonic functions is not necessarily harmonic.

6.11.1 Subharmonic Functions

If we relax the equality in the mean value formula to an inequality, we obtain so-called subhar-
monic functions.

Definition 6.13. TFAE for an upper semi-continuous f : U — R U {—o0}:
(a) Forall B(a,r) c U,

W (B(a,1) Joan

(b) Forall B(a,r) c U,

1

f(a) S M(&B(ﬂ, 1")) /(')B(u,r) f(x)dx

(c) If U is a bounded open set, for every harmonic h on V < U continuous up to the boundary one has
flov < hlov, then f <hin V.

(d) If f is C2, Af > 0in U.

If any of these hold, f is called subharmonic. The negative of a subharmonic function is called a superhar-
monic function.

Proof. For (b) = (c), suppose f|oy < h|sy but f(a) > h(a) for some harmonic function & and
a € B. Then, the set where f — h is positive is open and nonempty. Suppose x is the maximum of
f — h. Then, the sub-mean value property implies that f —  is constant in a neighborhood of x,
implying that the set where f — h achieves its maximum is open and closed, i.e. f — h is constant,
which is a contradiction. For (c) = (b), take a harmonic function / such that /s = f|sp (Which
can be done by Poisson’s formula). Then, f(a) < h(a) = m faB(W) f(x)dx.

(b) = (a) follows by integrating on both sides, and (a) = (b) by continuity.

Finally, if f is C?, the argument in the properties of harmonic functions directly proves the equiv-

alence of (a) and (c). O
Remark 6.11. The set {x : f(x) = —o} for a subharmonic function f has measure zero. This follows from
the following facts:
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(a) If f is subharmonic, f € L} , since the set of points where f is locally integrable is both open and
closed.

(b) If f is subharmonic, [, fdx > —co if B < U. This is true since the integral over a sphere of f can
be bounded by the value of f at any point of inside the ball, which implies the integral is finite, for
otherwise f = —o0 on an open set.

Corollary 6.27.1. From the third definition, one obtains the maximum principle for subharmonic functions:
if f: U — R is subharmonic and achieves a global maximum in U, it is constant. Moreover, if U is
bounded and f is continuous up to oU, f achieves its maximum on 0U. As a counterexample to the local
maximum principle, max(x, 0) is subharmonic, yet has local maxima in the left half-plane.

Proposition 6.11.  (a) Subharmonic functions form a positive cone, i.e. if u, v are subharmonic, a,b > 0,
then au + bv is subharmonic.

(b) If uq, ..., uy, are subharmonic, max(uy, ..., ) is subharmonic.

(c) If ¢ is convex harmonic and u is subharmonic, then ¢ o u is subharmonic. In particular e, u* =
max(u,0), and u?, p = 0, are subharmonic functions.

(d) Since it suffices to check that Au > 0 to show u is subharmonic, log(1 + |f|?) is subharmonic for f
holomorphic.

(e) From the sub-mean value property, it is clear that a normally convergent sequence of subharmonic
functions is subharmonic, and by monotone convergence, a decreasing sequence of subharmonic func-
tions is subharmonic.

Note that if f is defined on a simply connected domain (possibly with zeros), then log | f| is sub-
harmonic if we define log0 = —oo. This is because subharmonicity is a local property, i.e. being
subharmonic in a neighborhood of every point implies global subharmonicity.

Here is an important analogue of Liouville’s theorem, which now cruically holds only in R,

Proposition 6.12. A subharmonic function u on C that is bounded above is constant.
Proof. Consider a perturbation of u defined by u.(z) = u(z) — elog |z|. This perturbation agrees

with © on dD, and u(z) < u¢(z) on |z| > 1. Moreover, by construction,

sup |ue| < sup |ue| = sup |u| = sup |u|,
|z|>1 |z|=1 |z|=1 D

where we can use the maximum principle on u, since it goes to —o as |z| — o0, so
u(z) = ue(z) + €log|z| < sup |u| + elog|z|
D
on |z| > 1. Sending € — 0 yields u(z) < supp, |u| on C, which violates the maximum principle, a
contradiction. Thus, u is constant. ]
Subharmonic functions enjoy very nice properties when discussing their means.

Lemma 6.28. A radial function f is subharmonic iff f is a convex increasing function of logr.

Proposition 6.13. Let u : C — R be subharmonic and and define 1,,(r), J.(r), My (r) to be the spherical
mean, ball mean, and maximum value of u for B(0, R) respectively. Then, I, ], M, are convex increasing
continuous functions of logr, and u(0) < J,(r) < L,(r) and u(0) = J,(0) = L,(0) = M(0).
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Remark 6.12. Note that 1, |, are well-defined since subharmonic functions are locally integrable by Re-
mark 6.9.

Proof. We first prove the statement for M,,. We use the following characterization of convex func-
tions f : R — R - f is convex iff for any linear function I/, f — [ attains its maximum on the
boundary. Then, for any 4, b € IR, note that

v(z) :=u(z) —alog|z| — b

is subharmonic in an annulus around 0 (since log |z| is harmonic), and so by the maximum princi-
ple, if M, (r) —alogr — b < 0 on the boundary, then v < 0 on the boundary, and therefore also on
the annulus, and since M,,(r) = sup,_, v(z) —alogr — b, we conclude that M, (r) —alog |z| —b < 0
on the annulus, showing that M, is convex as a function of logr.

To prove the claim for I, ], we first assume u € C2. Then, since A = 0y, + %Gr + %2899, and I, is
radial, we have that [ Au = A ['u > 0, which implies

1
I(r) + ;I{,(r) >0 < (r0,)* Li(r) = 0 < t — I,(¢") is convex,

since r = ¢! implies 0, = ¢;. In the general case, we construct

Ue = /I(x —0z)¢(z)dz,

where ¢ is a smooth nonnegative radial function with f ¢ = 1 that equals 1 on ¢D. Then, u,
decreases to u by the sub-mean value property, so I := I, decreases to I, so monotone conver-
gence implies convexity of I, in logr for arbitrary subharmonic u. One can also easily see that I,
is increasing as follows: find a monotone sequence of continuous functions gy decreasing to u.
Then, for r; < rp, pick h harmonic so that u < h = g on |z| = ry, then u < h everywhere and
Li(r1) < Iy(r1) = In(r2) = Ig (r2). Sending g to infinity and using monotone convergence com-
pletes the proof, and the same argument applies for J,. The fact that J,(r) < I,(r) follows from
the fact that J, is obtained by radially integrating I,,, which is increasing, and continuity for all
functions follows from convexity. O

Corollary 6.28.1. If f € H(ID), then Liog 5|, Lo+ 1 (e) are increasing continuous function convex in t, so
Log |1, Diog+ (7] = -

Corollary 6.28.2. If u is harmonic in an annulus, then I,(r) = J,(r) = alogr + b since +1,, are convex
inlogr.

Corollary 6.28.3. Note that by setting u = log |f|, the convexity of M, directly implies the Hadamard
three-circles lemma.

==

Remark 6.13. The same exact argument shows that the radial LP averages I, := 5~ ( f02” u(reif’)lﬂd())
are increasing continuous functions convex in logr.

We are now ready to state our main result.

Theorem 6.29 (Fundamental Theorem of Subharmonic Functions on C). Let u : C — R be subhar-

monic. Then, if liminf,_, 1\1/2,:%(:) = 0, then u is constant.
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Proof. This follows immediately from the following lemma.
Lemma 6.30. If liminf,_, @ = 0and f is convex and increasing, then f is constant.

Proof. By convexity, for x <y < z,

z—y (¥ — %)z f(2)
< —_.
Fly) < =¥y DR
Taking a subsequence such that @ — 0asz — wyields f(y) < f(x), so f is decreasing and
therefore constant. O
Since M, (logr) < M,(r) for large r, the conclusion then immediately follows. O

Remark 6.14. In this proof, you have to be careful to ensure that r — oo to say logr « r.

Suppose f € H(D) and f(0) # 0. Then, if inf|,;_, [f(z)| > 0, then % [log |f(re®)|do = log |f(0)],
and moreover, if f is continuous up to the boundary, the f cannot vanish on ¢D on a set of
positive measure.

Proof. One can prove the first fact in two ways - either using Jensen’s formula (which actually

shows that Ijog 7| (7) is linear in logr) and the fact that >}, g, log @ < 0, or using the subhar-
monicity of log|f|. The second fact follows from the fact that I, || is increasing, so by Fatou’s
lemma,

—o0 < limsup log |f(re")|d6 < / lim sup log |f(re'?)|d0 = f(re®)de.

r—1 |z|=r zZ|I=1  r—1 |z]=1

6.11.2 Poisson Kernel and Conformal Mappings

An important and absolutely fundamental question in PDE is that of solving Laplace’s equation,
i.e. finding a harmonic function u such that

Au=0in U,
u=gonod,

for some open U = RR? and real function g. How can we utilize complex analysis techniques to
solve this? First, we consider U = B(0,1) to take advantage of symmetry. If f(z) = >,.",a,z" is
holomorphic in U, since every harmonic function is the average of a holomorphic function and its
conjugate, making the substitution z = re’® yields

u(e) = 2(F() + 7)) = (i B 1 3 9) .
n=0 n=0
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Setting r = 1, we may solve for the coefficients by setting a, = g(n). Now, the partial sums are
harmonic, and converge normally to ¢ whenever, for example, g is continuous. This gives an
explicit solution

1 — 1 (& . ino N 0
u(2) = 2(F) + @) = (Z gy + 37 gnyrte ),
n=0 n=0
which can be rewritten in terms of the Poisson kernel
0 2 i
; 1 1 1—7r 1+7re
P.(0) = [n| ,in6 _ ' 1= o el
r(0) n;oor ¢ 1—rel " 1_rei0 1-2rcosf+r2  1—re i
as
0 L& o [ in6—into | —inf+intd L/ ] in(0—t) L[ it
0\ n ind—in —inf+in o n| in(6— o i
ure) = 7= 3 [ g )dt—zn/ng(t) ) e tat - Zn/nP,(G—t)g(e )t
n=—00 Nn=—0o0
Ok, but what about R"? There, the Poisson kernel is
2 — |x|?
P, A el I
O = g

for( e 51 Then, the Poisson integral formula becomes

u) = 5= [ Pl D3z,

Wy—1

where w,_1 = u(S""!). What are the regularity conditions on g that allow you to use the Poisson
integral formula?

Proposition 6.14. If ¢ € C(0DD), then the P,[g] — g uniformly as r — 1.If f € L'(0ID), then the Poisson
kernel P[g] is harmonic in ID. Moreover, if g € LF (0D), then | P;[g]|, < ||gll, and P,[g] — g in LP.

Proof. That the integral formula is harmonic follows directly from Morera’s theorem and the fact
that holomorphic functions are harmonic. By the maximum principle, |P[g]|| = g/ «, so approx-
imating g by trigonometric polynomials g, on the disk yields that P[g;] — P uniformly. Note that
this implies that P;[g] — g uniformly as » — 1. Using Jensen’s and approximating by continuous
functions then yields that P,[g] — gin L. O

These results yield the following theorem:

Theorem 6.31. If u is harmonic in ID and sup, ||u,|, < o, then if p = 1, u|sp is a complex Borel measure,
and for 1 < p, u|sp € LP.

Consequently, g € L? iff P[g] is harmonic with radial norms uniformly bounded in L? (except for
p = 1, when g might be a measure).

Theorem 6.32 (Harnack’s Inequality). If f is harmonic on B(0,1) and continuous up to a boundary,

then
1—7r 1+r

Wf(o) < flx) < Wﬂo)

on 0B(0,r) < B(0,1). More generally,
sup f «q inff,
a Q

independent of f.
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Proof. Using Poisson’s formula and the fact that 1 —r < |x —¢| < 1+ (since x € B(0,7)), the

kernel satisfies
1—7r 1—72 1+7r
< <

A+ =g = a=n"

and the rest follows from the mean value property. O

We have obtained an explicit solution to the Laplace equation on the unit disk. But what about
arbitrary domains? There, one has to use conformal mappings.

Definition 6.14. A conformal map is a biholomorphic bijective map between two regions.
The existence of such maps is a fundamental result of complex analysis:

Theorem 6.33 (Riemann Mapping Theorem). Every simply connected open proper subset U of C is
conformally equivalent to the open unit disk, with a unique map f : U — D such that f(zo) = 0, f'(z0) >
0.

Proof. We first need a quick lemma:

Lemma 6.34 (Hurwitz’s Theorem). If f, € H(U) is a sequence of injective functions converging nor-
mally to a nonconstant f, then f is injective.

Proof. Suppose f is not injective. Then, f — a has at least two zeros in U for some a € C. Find a
curve 7y encompassing at least the two zeros and avoiding any other zeros. Then, by the argument
principle,

dz/

2711 fn = omi ?g f—
O

Now, for an arbitrary simply connected open proper U, consider the family 7 < H(U,DD). For
a ¢ U, note that log(z — a) € F exists and is injective. Moreover, note that log(z) — log(zo) — 27ti is
bounded away from 0 by continuity of log . Now, consider

1

fz) = log(z) — log(zo) — 27ti’

which is a bounded injective holomorphic function. After scaling and applying a unit disk trans-
formation, one may assume that f : U — ID. By Montel and Hurwitz, one may take the supremum
of [f'(zo)] over f € F, which is still a bounded and surjective holomorphic function. Now, sup-
pose F is not surjective and misses some a € ID. If ¢, is the corresponding disk automorphism,
G = /¢ o F is injective, G(zg) = 0, and |G'(zo)| > |F'(z0)|, since by an application of the Schwarz
lemma to ® = ¢ 1 0z%0 (Pg:(120)’ one gets F'(z9) = ®'(0)G'(zp) and |®'(0)| < 1.

O]

Finally, we need a lemma regarding the preservation of the harmonic properties of functions:

Lemma 6.35. If f is a (sub)harmonic function on U and g : U — V is a conformal map, then f o g is
(sub)harmonic on V.
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Proof.
A og) = 2s(fog) = (Afog)lg'R

and the conclusion follows from the Laplacian characterization of (sub)harmonic functions. O

Thus, to solve Laplace’s equation on an arbitrary domain, one just needs to first map it conformally
to the unit disk, solve the Dirichlet problem on the disk, and map it back onto the desired domain.
Here is a list of commonly used conformal maps:

(a) Upper Half-Plane (Second Quadrant) to Unit Disk z — 2.

. -1
(b) Right Half-Plane to Unit Disk z — .

(c) Horizontal Strip 0 < Imz < 77 to Upper Half-Plane z — ¢*.

(d) Quarter-Plane to Half-Plane z — z2.

(e) Rotation by 0 degrees z — ¢z

(f) Unit disk to complement of unit disk z — %
Remark 6.15. The inverses of these maps give the reverse conformal maps.

Remark 6.16. To show that a region is mapped to another region, it is sufficient to show that the boundaries
and one interior point are mapped to each other.

Remark 6.17. Note that since Mobius transformations are automorphisms of the Riemann sphere, they are
conformal maps of regions in the complex plane where they are defined.

Another common type of qual problem is to evaluate a particular contour integral. Here are some
general guidelines on which contours one should use:

P() P(x)
J¥ Qi [ osx g

for P, Q polynomials and || < 1 can be evaluated with a keyhole contour with a branch
of logarithm defined away from the positive real axis. Note that at the bottom edge of the
contour, one has to use z = €%t to get a factor of ¢, Additionally, note that one has to
use the appropriate ch01ce for residues based on the branch cut - for instance, a pole at —1

(a) Integrals of the form

has to take the form ¢ ,hote™ 2.

(b) Trigonometric integrals of the form
/ P(sinf, cos6)
Q(sin B, cos 0)

for P,Q polynomials may be evaluated by making the substitution cos = 3(z + 1),sinf =

5 (z— l) z = €% and using residue theorem.

. P(x) P(x)
/]Rsme(x)dx,/Rcost(x)dx

for P,Q polynomials may be evaluated by taking them as the imaginary (real) part of a
complex integral.

(c) Integrals of the form
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Theorem 6.36 (Sokhotski-Plemelj Formula). If f is holomorphic, then

lim f(y) dy — / fy)
|

: - Fif(x
e—0 JRr (X0 i€) —y xo—y|ze X0 — Y y= f(x0).

Proof. Consider rectangular contours around xg that goes to Im z = +e. Then, by Cauchy’s integral
formula,

. 1 .
/|‘x —y|=e xj(j(z)ydy - /x —y|=e mdy + 171'/(; f($€el”9)d9 = $27-“‘]:(x0)r

where 7 is a semicircular arc around xg of radius €. As € — 0, the value on the semicircular arc
approaches F f(xp). By the partial Fourier transform property, the second term on the left tends as
€ —0to

f y + Z€ / 2mxg§' / 271’1 (xoti€e)d /
+ 0+
() a¢ = | f(xtie)e a¢ = % _|_ i€) dy,

R X0 — y+ze

where f.(z) = f(z + i€). Thus,

/]R(fe('y)—ydy_/ ) dy = Frif(xo),

Xo * i€) xo—y|=e X0 — Y

and since f. — f uniformly as € — 0, this completes the proof. O

6.12 Hardy Spaces and Nevanlinna Class

1
Definition 6.15. For f € H(ID), define the norms |f||, := (% 02” |f(ref9)\f7d9) " . Then, since |f|F =

eP1981f1 is a subharmonic function, ||f|, is increasing in r and convex in log .

Definition 6.16. Define the Nevalinna class N of all f € H(ID) such that

1o 0
3 . 1
11_r)r11 271/0 log™ |f(re")|do < oo.

Lemma 6.37. If f € N, then the zeros of f satisfy the Blaschke condition ), 1 — |a,| < oo.

Proof. WLOG suppose f(0) + 0. By Jensen’s, f € N implies
r
foI] s <C

so sending r — 1yields [ [, |ax| = |f(0)]7!1C > 0,50 Y, (1 — |an|) < o0. O

Definition 6.17. The Hardy space H” for p > 0 is the subspace of f € H(ID) such that
Il = lim | f], < o0,

with H® being the space of bounded holomorphic functions on the unit disk.
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Remark 6.18. One can show that if p > 1 and f,, is Cauchy in HP, using Cauchy’s integral formula that
it converges locally uniformly, i.e. HP is a Banach space.

Remark 6.19. One easily sees that H® < HP < H1 < N for 0 < g < p.
Lemma 6.38. H?  H(ID) n L?.

Proof.

1 om , 1
If15 = /0 /0 |f(re®) Prdrde < 27 /0 HF 1y = £,
]

Proposition 6.15. If B is the infinite Blaschke product corresponding to the zeros of f € HP, then f = Bg
for g € HP.

Proof. B is well-defined since the zeros of f € H? satisfy the Blaschke condition, and the partial
products converge monotonically on ID, so one concludes by monotone convergence. O

Lemma 6.39. For f € H?,lim,_,; f(re'®) = f(e'®) is well-defined a.e. and in LP (0ID). Moreover f(re'®) —
finLP.

Proof. Define ¢(g) = [, &fr on L7 for f,(x) = f(rx). Then, by Banach-Alaouglu, one can showing
that there is a weak—* convergent subsequence f,, — f € L?, which can be then be shown to
converge pointwise a.e. Moreover, f,, < Hf (the maximal function of f), and Hf is bounded in
L?, so by dominated convergence theorem, f, — f in L?. O
Definition 6.18. Define H? (D) := {f € LP(éD) : f(n) = 0,n < 0}.

Lemma 6.40. The mapping HP (D) — HP(0D) given by f — lim,_,1 f(re’®) is an isomorphism of Banach
spaces.

Proof. By properties of the Fourier transform, it is easy to see that H?(0D) is a closed subspace of
LP(0D), therefore it is also a Banach space. One notes that lim,_1 f(re’?) = 3}, _ a,e™?, so this is
indeed a well-defined map. Moreover, we have already shown that this map is an isometry, so it
is injective and continuous. Finally, one can use the Poisson kernel to show that it is surjective,
and conclude by the open mapping theorem. O
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