
Basic Exam Review Sheet
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This sheet reviews the key concepts and material assessed on the UCLA Basic Exam. The central focus is on material covered
in upper-level undergraduate and first-year graduate courses in linear algebra and real analysis. More importantly, the breadth and
scope of content is sufficient to prepare a mathematics student for advanced graduate-level coursework in algebra and analysis. It also
includes plenty of examples and problem-solving strategies in order to make it as easy as possible to study for an exam that broadly
covers this material.

The following is conventional notation used throughout this sheet:

• Z,Q,R,C - integers, rational numbers, real numbers, and complex numbers, respectively.

• K - an arbitrary scalar field.

• ”iff” - if and only if.

Linear Algebra

Fundamentals

At its core, linear algebra is the study of vector spaces, typically
taken to be the finite-dimensional Euclidean spaces Rd, and the
action of linear transformations on elements of those spaces. We
begin with some fundamental concepts in the study of linear alge-
bra.

Definition 1. A vector space (V,K) is a set V of vectors (de-
noted in bold) along with a field K of scalars that satisfy the fol-
lowing axioms:

• (Identity) ∃ 0 ∈ V,

v + 0 = 0+ v = v, ∀ v ∈ V.

• (Associativity)

v1+(v2+v3) = v1+v2+v3 = (v1+v2)+v3, ∀v1,v2,v3 ∈ V.

• (Commutativity)

v1 + v2 = v2 + v1, ∀ v1,v2 ∈ V.

• (Existence of Inverses) ∀ v ∈ V,∃w = −v ∈ V,

v +w = w + v = 0.

• (Scalar Associativity)

k1(k2v) = k1k2v = k1(k2v), ∀ k1, k2 ∈ K,v ∈ V.

• (Distributivity)

(k1 + k2)v = k1v + k2v, ∀ k1, k2 ∈ K,v ∈ V.

and

k(v1 + v2) = kv1 + kv2, ∀ k ∈ K,v1,v2 ∈ V.

Remark 1. Note that 0 and 0 are distinct objects - the former is
the zero scalar, while the latter is the zero vector.

Vectors are usually denoted in bold or with an arrow, i.e. v
or v⃗. In the following, we adopt standard practices and omit the
notation for convenience, referring simply to a vector v. For clar-
ity, we use a, b, c, ... to refer to scalars and v, w to refer to vectors,
using the bold notation where necessary to distinguish between
the two.

Let (V,C) be a vector space. We now define the notions of
linear independence and basis, which are both crucial to the study
of linear transformations.

Definition 2. A subset W ⊂ V is called linearly independent
if for any finite collection of vectors {vi}ki=1 ⊂ W,

k∑
i=1

aivi = 0 ⇒ ai = 0 ∀i.

Particularly, {v1, ..., vk} are linearly independent if

k∑
i=1

aivi = 0 ⇒ a1 = a2 = ... = ak = 0.

Definition 3. The span of W ⊂ V is the set of finite linear com-
binations of vectors in W, i.e.

span W =

{
k∑

i=1

aiwi

∣∣∣∣∣wi ∈ W

}
.

Definition 4. A basis of a vector space V is a set of linearly in-
dependent vectors which span the space. Particularly, {v1, ..., vk}
is a basis for V if

k∑
i=1

aivi = 0 ⇒ ai = 0 ∀i,
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and

v =

k∑
i=1

bivi ∀ v ∈ V m

for some b1, ..., bk ∈ C.

The following is a key theorem (which relies on the Axiom of
Choice in the form of Zorn’s lemma) demonstrating that every
vector space has a basis.

Theorem 1. (Steinitz Exchange Lemma) Let {v1, ..., vm} be lin-
early independent and suppose V = span{w1, ..., wn}. Then m ≤ n
and {v1, ..., vm, wi1 , ..., wik} is a basis for V.

Theorem 2. Every vector space V has a basis.

Proof. Consider a partial order on linearly independent subsets of
V, with the order given by inclusion. By Zorn’s lemma, there must
therefore exist a maximal subset W. But W must span V - other-
wise there would exist v ̸∈ span W, and W ∪{v} would contain W,
contradicting its maximality.

Similarly, one can show the following.

Theorem 3. Every basis of V has the same cardinality.

Proof. Let {vi}i∈I , {wj}j∈J be two bases for V. This implies that
vi is a finite linear combination of some {wjk} for jk ∈ Ji for each
i. Thus, V = span {vi} = span

⋃
j{wjk}. Since no proper subset

of {wj} can span V,
⋃

i Ji = J. Then, since each Ji has at least one
element ji, there exists an injective map i → ji, i.e. |I| ≤ |J |. By
symmetry, |J | ≤ |I|, so |I| = |J |.

Critically, this allows us to define the notion of dimension for
a vector space.

Definition 5. The dimension of a vector space dim V = |V |
is the cardinality of a basis B of V. If |V | < ∞, the vector space
is called finite-dimensional. Otherwise, it V is known as an
infinite-dimensional vector space.

Remark 2. It can be easily shown that every finite-dimensional
vector space of dimension d is isomorphic to Kd.

Example 1. • As mentioned, every finite-dimensional vector
space is isomorphic to Kd.

• Continuous functions on a metric space (X, d) are an
infinite-dimensional vector-space.

• Matrices Mm×n(C) form a vector space of dimension mn.

• If W ⊂ V is a subspace (i.e. a subset of V that is a vector
space), then V/W is a vector space of dimension |V | − |W |.

Linear Transformations

One arrives at the crux of linear algebra when considering the ac-
tion of a particular set of functions called linear transformations
acting on the vector space V.

Definition 6. A linear transformation L : V → W between
vector spaces is a function satisfying the following properties:

• L(av) = aL(v) ∀a ∈ K, v ∈ V,

• L(v1 + v2) = L(v1) + L(v2) ∀v1, v2 ∈ V.

The kernel or null space of L is defined as

ker L = {v ∈ V |Lv = 0}

and the image or range of L is defined to be

L(V ) = im L = {w ∈ W |∃ v ∈ V,Lv = w}.

dim ker L is called the nullity and dim im L is called the rank
of L. Moreover, let Col(A) and Nul(A) be the span of the columns
and rows of A, respectively. If A is an n×m matrix and rank(A) =
min(n,m), A is said to be full rank

Given a matrix A, it is true that Col(A) = im A.

Lemma 4. For a linear transformation L : V → W with |V | =
|W |, the following are equivalent:

1. L is an isomorphism.

2. L is injective, i.e. ker L = 0.

3. L is surjective, i.e. L(V ) = W.

4. L sends a basis of V to a basis of W.

Then, L is called non-singular.

A linear transformation L : V → V represented by A is invert-
ible if A−1 exists, and AA−1 = A−1A = I.

Lemma 5. The following are equivalent:

1. Av = w has a unique solution given by v = A−1w.

2. det A ̸= 0.

3. A is an isomorphism of vector spaces.

4. A has full rank.

Reduced Row Echelon Form

Definition 7. A process known as Gaussian elimination allows
one to use three row/column operations on a matrix (switching
two rows/columns, adding a multiple of one to another, or multi-
plying by a nonzero constant) to bring a matrix to reduced row
echelon form, which takes the form1 0 a1 ... ...

0 1 a2 ... ...
0 0 0 1 ...


The matrix is in this form if it has a leading 1 in each row and if

every other value in the column with a leading 1 is zero. This form
allows one to write a parametrization of the solutions to Ax = b,
or equivalently, construct a basis for the kernel of A. Moreover, the
columns with leading 1s are the columns which span the image of
A.
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Matrix of a Linear Transformation

For L ∈ Hom(V,W ), and {vi}ni=1 = B, {wj}mj=1 = E being bases of
V,W, respectively, we note that

Lvi =

m∑
j=1

aijwj ,

meaning that the matrix ME
B = (aij). In other words, the i-th

column of the matrix is the coefficients of the basis vectors {wj}
of Lvi.

Definition 8. The row (column) rank of a matrix/linear trans-
formation is the maximum number of linearly independent rows
(columns) of a matrix. Equivalently, the rank of a linear transfor-
mation ϕ is the dimension of the image of ϕ.

Two matrices/linear transformations A,B are similar if there
exists an invertible matrix P such that B = PAP−1. Similarity
can be easily shown to be an equivalence relation.

Remark 3. Note that

P = MB
E (I)

satisfies P−1MB
B(ϕ)P = ME

E(ϕ), implying that similar matrices
are precisely those that represent a particular linear transforma-
tion with respect to two different bases.

Theorem 6. (Rank-Nullity Theorem) Let T : V → W be a linear
transformation. Then dim im T + dim ker T = dim V.

Proof. Let {v1, ..., vk} be a basis for ker T. Then, by the
Steinitz exchange lemma, there exist vectors vk+1, ..., vn such
that {v1, ..., vn} form a basis for V. It is left to show that
vk+1, ..., vn form a basis for im T. Clearly, {T (v1), ..., T (vn)} =
{T (vk+1), ..., T (vn)} span im T. Moreover, they are linearly in-
dependent, as

∑n
i=k+1 aivi = v ∈ ker T implies ai = 0 (since

vk+1, ..., vn ̸∈ ker T ) and are linearly independent). Thus,
{T (v1), ..., T (vn)} form a basis for im T, proving the Rank-Nullity
Theorem.
Alternative Proof: Let r = dim im T, n = dim V. If the rank is
maximal, we are done. If not, there are n − rank A free variables
t1, ...tn−r in the solution to Ax = 0, and let x1, ..., xn−r be the so-
lutions obtained by taking one variable to be 1 and the rest to be
zero. Note that this implies that {x1, ..., xn−r} are linearly inde-
pendent, and moreover, they span ker A. Thus, they form a basis
for kerA, and dim ker T = n− r.

Remark 4. By the first isomorphism theorem and the splitting
lemma, we can actually obtain a stronger statement that V =
ker T ⊕ im T ∗.

Dual Space

Definition 9. Define V ∗ = Hom(V,K) to be the dual space of
V. If V has basis {v1, ..., vn}, V ∗ has the dual basis {v∗1 , ..., v∗n},
where v∗i (vj) = δij . One can similarly define the double dual
V ∗∗ = Hom(V ∗,K).

For ϕ ∈ Hom(V,W ), f ∈ W ∗, f ◦ ϕ ∈ V ∗, so the mapping
f → f ◦ ϕ induces a map ϕ∗ ∈ Hom(W ∗, V ∗).

Theorem 7. MB∗

E∗ (ϕ∗) = (ME
B)

T .

Theorem 8. The row rank and column rank of a matrix are equal
(from now on referred to as the rank of the matrix).

Proof. Pick bases of V,W such that A represents the linear trans-
formation ϕ with respect to these bases. It suffices to show that ϕ
and ϕ∗ have the same column rank. Then,

f ∈ ker ϕ∗ ⇔ ϕ(V ) ⊆ kerf ⇔ f ∈ Ann(ϕ(V )).

It can then be shown that dim Ann (ϕ(V )) = dim W − dim ϕ(V )
and dim ker ϕ∗ = dim W ∗ − dim ϕ∗(W ∗), demonstrating that
dim ϕ(V ) = dim ϕ∗(W ∗), as needed.

Tensor Products

Definition 10. Given vector spaces V,W, a tensor product
space V ⊗W is a vector space with an associated bilinear function
B : V ×W → V ⊗W mapping (v, w) → v ⊗w. v ⊗w is called the
tensor product of v and w, and is also called an simple tensor.
Tensors are defined by three key properties:

1. (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w.

2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

3. a(v ⊗ w) = (av)⊗ w = v ⊗ (aw) for a ∈ K.

Elements of a tensor product space are called tensors, and every
tensor can be written as a sum of simple tensors.

Given a linear map f ∈ Hom(U, V ), the tensor product f ⊗W
is the unique linear map that satisfies (f ⊗W )(u⊗w) = f(u)⊗w.
Importantly, if f, g are two linear transformation represented by
matrices A,B, respectively, then their tensor product is a linear
transformation represented by the Kronecker product of A and
B, which is a |A||B| × |A||B| matrix C given by the block product
of A and B, i.e.

C =

a11B a12B ...
a21B a22B ...
... ... ...

 .

Tensor products can be thought of as ”products” of vector
spaces in analogy to direct sums, and satisfy the following proper-
ties:

1. If {vi}, {wj} are bases for V andW, respectively, {vi⊗wj} is a
basis for V ⊗W. Particularly, if dim V = n and dim W = m,
dim V ⊗W = nm.

2. U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W.

3. V ⊗W ∼= W ⊗ V.

4. U ⊗ (V ⊕W ) ∼= (U ⊗ V )⊕ (U ⊗W ).

5. Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W )).

Proof. We prove (1), i.e. that if dim V = n and dim W = m,
dim V ⊗W = nm. Note that there is a canonical isomorphism

V ∗ ⊗W ∼= Hom (V,W ),

given by the map f : V ∗ ⊗W → Hom(V,W ) as

f(ϕ⊗ v)(u) = ϕ(u)v

and its inverse map g : Hom(V,W ) → V ∗ ⊗W given by

g(u) =
∑
i

e∗i ⊗ u(ei).
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Indeed, the two maps are inverses of each other, as

f(g(u))(v) =
∑
i

f(e∗i ⊗ u(ei))(v) =
∑
i

e∗i (v)u(ei)

= u

(∑
i

e∗i (v)ei

)
= u(v).

and

g(f(ϕ⊗ v)) =
∑
i

e∗i ⊗ f(ϕ⊗ v)(ei) =
∑
i

e∗i ⊗ ϕ(ei)v =∑
i

ϕ(ei)e
∗
i ⊗ v = ϕ⊗ v.

Since dim Hom(V,W ) = nm, the result follows, proving (1).

Eigenvectors and Eigenvalues

Throughout this section, let L : V → V be a linear transformation
(i.e. L is an endomorphism) on a finite-dimensional vector space
V represented by a matrix A with respect to some basis.

Definition 11. A nonzero eigenvector v of L (A, respectively)
with eigenvalue λ is a vector that satisfies

Av = λv.

The subspace of eigenvectors of V with eigenvalue λ forms an
eigenspace ker(A− λI) = Eλ ⊂ V. We also define the minimal
polynomial mA(x) to be the unique monic polynomial of smallest
degree such that mA(A) = 0. Moreover, we define the character-
istic polynomial cA(x) = det(A− xI).

By Lemma 4, we conclude that λ is an eigenvalue of A iff
det (A− λI) = 0.

Definition 12. The algebraic multiplicity of an eigenvalue λ
is its multiplicity as a root of cA(x). The geometric multiplicity
is the dimension of the eigenspace dim Eλ = dim ker(A− λI).

Lemma 9. The geometric multiplicity is strictly less than or equal
to the geometric multiplicity.

Proof. Let v1, ..., vk be eigenvectors for a given eigenvalue λ and
change basis to those eigenvectors. Then, the linear transformation
takes the form [

λIk B
0 C

]
.

Then, χA(x) = χ(Ik)χ(C) = (x − λ)kχ(C). Thus, the algebraic
multiplicity of λ is at least k.

Moreover, the following relations hold between eigenvalues,
eigenvectors, and minimal/characteristic polynomials.

Theorem 10. The following are equivalent:

1. mA(λ) = 0.

2. cA(λ) = 0.

3. λ is an eigenvalue of A.

4. λI −A is singular.

5. det (λI −A) = 0.

Proof. The equivalence of (1) and (2) follows from the remark be-
low, since mA(x) generates IL. (2) and (3) are equivalent by the
argument above. In fact, the minimality of mA(x) guarantees that
mA(x)|cA(x). (3) and (4) are equivalent since v is a nonzero ele-
ment of ker(λI −A), and (4) and (5) are equivalent by our results
on determinants.

Remark 5. More formally, let IL = {p ∈ K[t]|p(L) = 0}. Then,
IL is a proper ideal in K[t], so since K[t] is a PID, the minimal poly-
nomial is defined as the monic generator of the ideal IL = Ann(V ).

Remark 6. Note that the field K plays a crucial role here. If K
is not algebraically closed, then the minimal polynomial might not
split into linear factors.

Theorem 11. Similar matrices have the same minimal and char-
acteristic polynomials, by the converse is not true.

Proof.

det(PAP−1 − λI) = det(P )det(A− λI)det(P )−1 = det(A− λI).

Theorem 12. Let A and B be matrices which commute, i.e.
AB = BA. Then,

1. A and B share at least one common eigenvector.

2. Suppose that A has all distinct eigenvalues. Then, A and B
share a common basis of eigenvectors, i.e. there exists a ma-
trix P such that both PAP−1 and PBP−1 are diagonal (such
matrices are called simultaneously diagonalizable).

Proof. To prove (1), pick an eigenvector v of A, and note that the
subspace V = span (v,Bv,B2v, ...) (which consists of eigenvectors
of A from the commutativity condition) is invariant under B. Thus,
V contains an eigenvector of B, which is also an eigenvector of A,
showing that the two matrices share an eigenvector. We now show
(2). Consider a decomposition of V into eigenspaces of A:

V = Eλ1
⊕ ...⊕ Eλn

.

Since the matrices commute, each eigenspace is stable under the
action of B, and since each eigenspace is one-dimensional, this im-
plies that Eλi

is also an eigenspace of B. It thus follows that there
exists a shared basis of eigenvectors.

Remark 7. This theorem requires care with the assumptions. It
is not true without the assumption of distinct eigenvalues - for
instance if A = I, A is diagonalizable but the statement of the the-
orem is not necessarily true. Similarly, A and B may not share
any eigenvalues (take A = I,B = 2I, for instance) in common un-
less the distinct eigenvalue condition on A is specified. Finally, the
commutativity condition does not imply that both matrices share a
basis of generalized eigenvectors (i.e. the matrices are not neces-
sarily simultaneously Jordanized).

Listed below are additional important properties of eigenvalues
and eigenvectors:

1. tr (A) =
∑n

i=1 aii =
∑n

i λi.

2. det (A) =
∏n

i=1 λi

3. The eigenvalues of Ak are λk
i for k ∈ Z.
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4. A is invertible iff every eigenvalue is nonzero.

Remark 8. Note that since cA(x) consists of eigenvalues of A
as its roots (with the appropriate multiplicity), cA(x) = xn −
tr (A)xn−1 + ...+ (−1)ndet (A).

Definition 13. If v ∈ ker(A − λI)m but v ̸∈ ker(A − λI)m−1 for
some m > 1, v is known as a generalized eigenvector of rank m.
The set spanned by all generalized vectors for a given eigenvalue λ
is called the generalized eigenspace Fλ.

Range-Null Space Decomposition

Given a linear transformation T on a finite-dimensional vector
space V, we note that the following chain conditions hold:

ker T ⊆ ker T 2 ⊆ ... ⊆ ker T k ⊆ ...

and
im T ⊇ im T 2 ⊇ ... ⊇ im T k ⊇ ...,

and since V is finite-dimensional, this implies that there exists
an integer k past which both chains stabilize, which is called the
index of T. Then, one can make the following important claim:

Theorem 13. (Range-Nullspace Decomposition)

V = ker T k ⊕ im T k.

Proof. It can be easily shown that the intersection

ker T k ∩ im T k = {0}.

Then, if B is a basis for ker T k and C is a basis for im T k, by the
rank nullity theorem, B∪C is a basis for V since |B|+|C| = dim V.
Thus, V = ker T k ⊕ im T k.

Remark 9. In fact, one can show that if m is the minimal integer
such that ker Tm = ker Tm+1, then the chain stabilizes at m, and
an analogous condition holds for im T.

Remark 10. As a consequence, while there may not always exist
a basis for V consisting of eigenvectors of T, there always exists a
basis for V consisting of generalized eigenvectors for T.

Diagonalizability

Definition 14. A matrix A describing a linear transformation
T is diagonalizable if it is similar to a diagonal matrix, i.e.
PDP−1 = A, where D is a diagonal matrix. The columns of P
form a basis of V consisting of eigenvectors of T, and the diagonal
entries of D are the eigenvalues of A.

The following properties characterize diagonalizable matrices:

• V =
⊕

λ Eλ.

• The geometric and algebraic multiplicity of each eigenvalue
coincide.

• mA(x) is a product of distinct linear factors over K.

• A set of matrices {Ai} is simultaneously diagonalizable iff
AiAj = AjAi for all i, j.

Remark 11. Typically, one considers whether a matrix is diag-
onalizable over C. A real matrix A is diagonalizable over R iff
both its eigenvalues are real, as otherwise the eigenvectors will be
complex.

Bilinear Forms and Inner Products

Of particular interest in linear algebra is the study of bilinear forms
B : V → V → K, which are functions linear in each argument. It
can be shown that with respect to a certain basis, they can be
represented as B(v, w) = ⟨v, w⟩ = vTAw for some matrix A. We
differentiate between bilinear forms over R and C. Over R, sym-
metric forms satisfy the following properties:

1. ⟨av, w⟩ = ⟨v, aw⟩ = a⟨v, w⟩.

2. ⟨v, w⟩ = ⟨w, v⟩.

3. ⟨v1 + v2, w⟩ = ⟨v1, w⟩+ ⟨v2, w⟩.

Over C, Hermitian forms satisfy the following properties:

1. ⟨av, w⟩ = a⟨v, w⟩.

2. ⟨v, aw⟩ = a⟨v, w⟩.

3. ⟨v, w⟩ = ⟨w, v⟩.

4. ⟨v1 + v2, w⟩ = ⟨v1, w⟩+ ⟨v2, w⟩.

Definition 15. If ⟨v, v⟩ > (≥) 0 for v ̸= 0, ⟨·, ·⟩ is called posi-
tive (semi-)definite. If ⟨v, v⟩ < (≤) 0 for v ̸= 0, ⟨·, ·⟩ is called
negative (semi-)definite. With respect to a basis {v1, ..., vn} of
V, the matrix A representing a particular bilinear form satisfies
aij = ⟨vi, vj⟩.

Definition 16. A positive definite symmetric (Hermitian) bilin-
ear form is called an inner product, in which case V is called an
inner product space.

Remark 12. If A,A′ are two matrices representing a Hermitian
form with respect to bases B, E , respectively, then if P = ME

B,
A′ = P ∗AP. As a result, matrices that represent the Hermitian
product on Cn take the form P ∗P for some invertible matrix P,
and matrices that represent the standard dot product over Rn take
the form PTP. In fact, over Rn these matrices turn out to be pre-
cisely the symmetric positive-definite matrices.

Orthogonal Complement

Definition 17. For a subspace W ⊂ V and an associated bilin-
ear form ⟨·, ·⟩, the orthogonal complement is defined as W⊥ =
{v ∈ V |⟨w, v⟩ = 0}. Moreover, vectors v, w such that ⟨v, w⟩ = 0
are called orthogonal (sometimes denoted as v ⊥ w).

Lemma 14. (Parallelogram Law)

2∥x∥2 + 2∥y∥2 = ∥x+ y∥2 + ∥x− y∥2.

A form is called nondegenerate if V ⊥ = {v|v ⊥ V } = {0}.
Otherwise, it is called degenerate. A form is nondegenerate iff
the corresponding matrix A is invertible.

Lemma 15. If ⟨·, ·⟩ is nondegenerate, ⟨v, w⟩ = ⟨v, w′⟩ for all v ∈ V
implies w = w′.

In particular, if the bilinear form is nondegenerate on a finite-
dimensional vector space, the orthogonal complement satisfies the
following properties:

1. W ∩W⊥ = {0}.

2. (W⊥)⊥ = W.
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3. W ⊆ V ⇒ V ⊥ ⊆ W⊥.

4. W ⊕W⊥ = V.

5. V = W ⊕W⊥.

Definition 18. The orthogonal projection onto W π : V =
W ⊕ W⊥ → W is defined as π(v) = w, where v = w + w′, w ∈
W,w′ ∈ W⊥.

Theorem 16. Suppose W ⊂ V is closed. Then, given v ∈ V, there
exists a unique element π(v) = w ∈ W which minimizes ∥v − w∥.

Proof. Let d = inf ∥v − w∥, and let wn be a sequence such that
∥v − wn∥ → d. Then,

∥wn − wm∥ = 2∥v − wn∥2 + ∥v − wm∥ − ∥wn + wm − 2v∥2.

Since ∥wn + wm − v∥ ≥ d,

∥wn − wm∥ ≤ 2∥wn − v∥2 + 2∥wm − v∥2 − 4d2 → 0

as m,n → ∞. Now, let w1, w2 be two minimal vectors. Then,

∥w2 − w1∥2 = 2∥w1 − v∥2 + 2∥w2 − v∥2 − 4

∥∥∥∥w1 + w2

2
− v

∥∥∥∥2
≤ 2d2 + 2d2 − 4d2 = 0,

proving uniqueness.

Theorem 17. (Projection Formula) If W ⊆ V, {w1, ..., wm} is a
basis for W such that ⟨·, ·⟩ is nondegenerate on W, then the pro-
jection onto W is given by π(v) =

∑m
i=1 ciwi, where

wi =
⟨wi, v⟩
⟨wi, wi⟩

.

Theorem 18. For symmetric or Hermitian forms (i.e. symmetric
or self-adjoint matrices), there exists an invertible matrix P such
that PTAP (P †AP, respectively) is a diagonal matrix with entries
1,−1, 0 along the diagonal. The number of 1s, -1s, 0s, specified by
the triplet (p, q, r), is called the signature of the form. A form is
nondegenerate iff r = 0.

Theorem 19. (Sylvester’s Law) The signature of a matrix is in-
dependent of the choice of orthogonal basis.

Theorem 20. Given a matrix A,Let Ak be the k× k top-left sub-
matrix of A. Then, A is positive definite iff det Ak > 0 for all
k.

Spectral Theorem

We now consider the various properties of operators with respect
to their action on Hermitian forms.

Lemma 21. Let T be an operator and T ∗ be its adjoint. Then,

1. ⟨Tv,w⟩ = ⟨v, T ∗w⟩ for all v, w ∈ V.

2. T is normal iff ⟨Tv, Tw⟩ = ⟨T ∗v, T ∗w⟩ for all v, w ∈ V.

3. T is Hermitian (self-adjoint) iff ⟨Tv,w⟩ = ⟨v, Tw⟩ for all
v, w ∈ V.

4. T is unitary iff ⟨Tv, Tw⟩ = ⟨v, w⟩ for all v, w ∈ V.

We now state the spectral theorems on finite-dimensional vec-
tor spaces, which let us obtain results on the diagonalizability of
certain matrices.

Theorem 22. (Spectral Theorem for Normal Operators) Let A be
a normal matrix. Then, there exists an orthonormal basis of V
consisting of eigenvectors of A, which comprises a unitary matrix
P such that P ∗AP is diagonal.

Remark 13. Note that self-adjoint, Hermitian, symmetric, skew-
symmetric, and orthogonal matrices are all normal, therefore all
of them are diagonalizable.

Rational Canonical Form

For the rest of this section, we need the following lemma.

Lemma 23. If K is a field then K[x] is a PID.

Proof. Since K is a field, K[x] is a Euclidean domain. It is left to
show that for an ideal I ⊂ K[x], the nonzero polynomial of low-
est degree generates I, which can be done by using the division
algorithm.

Let T be a linear transformation on a vector space V, which
thereby makes V an F [x]-module. By the Theorem of Finitely
Generated Modules over PIDs, any finite-dimensional vector space
V is a direct sum of finitely many cyclic K[x]-modules of the form
K[x]/(ai(x)) In other words,

V = K[x]/(a1(x))⊕ ...⊕K[x]/(am(x)),

where the invariant factors ai(x) satisfy a1(x)|a2(x)|...|am(x)
and (am(x)) = Ann(V ). These elements can be made unique up
to unit by being required to be monic (i.e. the leading coeffi-
cient is 1). It immediately follows that am(x) = mT (x). Now, for
any of the direct summands, we construct a basis 1, x̄, x̄2, ..., with
a(x̄) =

∑
i bix̄

i = 0. Then, the matrix for multiplication by x can
be represented as the companion matrix

Ca(x) =


0 0 ... ... −b0
1 0 ... ... −b1
0 1 ... ... −b2
...

...
. . .

...
0 0 ... 1 −bk−1

 .

Then, since V is considered as an K[x]-module, the action of T is
equivalent to the action of Ca(x) for each direct summand, implying
that in this basis, T is represented by a block-diagonal matrix

Ca0(x)

Ca1(x)

...
Cam

(x)

 ,

which is called the rational canonical form for the matrix. From
this construction, the following properties follow:

1. Every matrix A has a rational canonical form, and that form
is unique.

2. A is similar to its rational canonical form. Two matrices are
similar iff they have the same rational canonical form.

3. (Cayley-Hamilton Theorem) cA(A) = 0.

4. The characteristic and minimal polynomials mCa(x)
(x) =

cCa(x)
(x) = a(x) of the companion matrix of a(x) are both

a(x).
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5. The characteristic polynomial of A is the product of all in-
variant factors of A.

Proof. The last statement follows from the fact above and the
multiplicativity of the characteristic polynomial for block-diagonal
matrices, as well as the fact that similar matrices share the same
characteristic polynomial. This immediately proves the Cayley-
Hamilton Theorem, since mA(x) = am(x).

In addition, any matrix xI−A can be brought into the Smith Nor-
mal Form using elemetary row and column operations (switching
two rows/columns, adding a multiple of one to another, and mul-
tiplying a row/column by a unit), yielding

1
...

a1(x)
...

am(x)


Jordan Canonical (Normal) Form

By further breaking down invariant factors into their elementary
divisors, we obtain that given a linear transformation represented
by a matrix A (since the roots of am(x) are the eigenvalues of A)
describes the vector space V as a direct sum of K[x] modules, i.e.

V =
⊕
i

K[x]/((x− λi)
k) =

⊕
i

ker(A− λiI)
k,

where λi are the eigenvalues of A. Similar to the rational canoni-
cal form, we let 1, (x̄ − λ), ..., (x̄ − λ)k−1 be a basis for the direct
summands, and since x = λ + (x − λ), one notes that the matrix
for multiplication by x in this basis becomes

λ 1
λ 1

λ 1
...

λ

 .

Each such k × k matrix is called a Jordan block of size k with
eigenvalue λ. Correspondingly, A can be then represented by a
block-diagonal matrix of the form

J1
J2

J3
...

Jt

 ,

with each Ji being a Jordan block, which is called the Jordan
canonical (normal) form for the matrix. The matrix P such
that PAP−1 is the Jordan normal form of A consists of the gen-
eralized eigenvectors of A. From this construction, the following
properties follow:

1. Every matrix A has a Jordan canonical form, and that form
is unique up to the permutation of Jordan blocks.

2. A is similar to its Jordan canonical form. Two matrices are
similar iff they have the same Jordan canonical form.

3. If A is similar to a diagonal matrix D (i.e. A is diagonaliz-
able), D is the Jordan canonical form of A.

4. If K contains all the eigenvalues of A, then A is diagonalizable
iff mA(x) is separable (i.e. has no repeated roots).

5. Counting multiplicities, the diagonal entries of the Jordan
form are the eigenvalues of A.

6. The sum of sizes of all Jordan blocks corresponding to an
eigenvalue is the algebraic multiplicity of that eigenvalue.

7. The number of Jordan blocks corresponding to an eigenvalue
is the geometric multiplicity of that eigenvalue.

Proof. If A is similar to a diagonal matrix, since similar matrices
share the same minimal polynomial, and the minimal polynomial
of a diagonal matrix has no repeated roots (its roots are, in fact,
the distinct elements along the diagonal), then the minimal poly-
nomial for A has no repeated roots. Conversely, the minimal poly-
nomial for the Jordan normal form is the least common multiple
of the minimal polynomials for the Jordan blocks. Since the mini-
mal polynomial for a Jordan block of size k is (x− λ)k, it follows
that each Jordan block must have size 1, i.e. the Jordan form is a
diagonal matrix.

Remark 14. As a consequence, it follows that every finite-
dimensional vector space V has a basis of generalized eigenvalues.

Special Matrices and Their Properties

Normal Matrices

Matrices A over C such that A†A = AA† are called normal. Their
most important property is that they are diagonalizable over C.

Skew-Symmetric Matrices

Matrices A over R such that A = −AT are called skew-
symmetric. They satisfy the following properties:

• Every diagonal element of A, and therefore the trace of A, is
zero.

• det AT = (−1)ndetA. In particular, for n odd, det A = 0.

• ⟨Av,w⟩R = ⟨v,Aw⟩R.

• A is normal, therefore diagonalizable.

Symmetric Matrices

Matrices A over R such that A = AT are called symmetric. They
satisfy the following properties:

• The entries on the diagonal of A (and therefore also the trace
of A) are real.

• ⟨Av,w⟩R = ⟨v,Aw⟩R.

• A is normal, therefore diagonalizable.
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Hermitian Matrices

Matrices A over C such that A = A† are called Hermitian (or
self-adjoint). They satisfy the following properties:

• The entries on the diagonal of A (and therefore also the trace
of A) are real.

• ⟨Av,w⟩C = ⟨v,Aw⟩C.

• det A ∈ R.

• A is normal, therefore diagonalizable.

Orthogonal Matrices

Matrices A over R such that AAT = ATA = I are called orthog-
onal. They satisfy the following properties:

• AT = A−1.

• A is normal, i.e. AA† = A†A.

• det A = ±1.

• (Av) · (Aw) = v · w. Equivalently, ⟨Av,Aw⟩R = ⟨v, w⟩R.

• The columns of A form an orthonormal basis of Rn.

• A is normal, therefore diagonalizable over C, with eigenval-
ues satisfying |λ| = 1.

Unitary Matrices

Matrices A over C such that AA† = A†A = I are called unitary.
They satisfy the following properties:

• A† = A−1.

• |det A| = 1.

• (Av) · (Aw) = v · w. Equivalently, ⟨Av,Aw⟩C = ⟨v, w⟩C.

• A is normal, therefore diagonalizable over C, with eigenval-
ues satisfying |λ| = 1.

Proof. The last one can be proven by noting that for an eigenvec-
tor v, ⟨v, v⟩ = ⟨Av,Av⟩ = |λ|2⟨v, v⟩, i.e. |λ| = 1. Diagonalizability
follows from the spectral theorem for normal matrices.

Overall, one recognizes Hermitian matrices as complex versions of
symmetric matrices and unitary matrices as complex versions of
orthogonal matrices.
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